Skip to main content
Log in

Wideband Microstrip Filters

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

New microstrip designs of bandpass filters have been developed on the basis of a low-pass filter with some or all of the sections of the high-impedance microstrip lines connected to a screen by stubs. The filters exhibit the high frequency selectivity and their fractional bandwidth falls within the range of 30–150%. An experimental sample filter with a passband center frequency of 2 GHz and a fractional bandwidth of 70% formed on a 1-mm-thick alumina substrate has a substrate area of ​​46 × 21 mm. It is shown that the measured frequency responses of the filter are in good agreement with those calculated using the numerical electrodynamic analysis of its 3D model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. C.-L. Hsu, F.-C. Hsu, and J.-T. Kuo, in Proceedings of the IEEE MTT-S International Microwave Symposium (Long Beach, CA, 2005), p. 679. https://doi.org/10.1109/MWSYM.2005.1516698

  2. B. A. Belyaev, A. M. Serzhantov, An. A. Leksikov, Ya. F. Bal’va, and E. O. Grushevskii, Tech. Phys. Lett. 46, 787 (2020). https://doi.org/10.1134/S1063785020080179

    Article  ADS  Google Scholar 

  3. Ya. A. Kolmakov and I. B. Vendik, in Proceedings of the 35th European Microwave Conference 2005 (Paris, 2005), Vol. 1, p. 21. https://doi.org/10.1109/EUMC.2005.1608783

  4. S. Shang, B. Wei, B. Cao, X. Guo, X. Wang, and L. Jiang, IEEE Trans. Appl. Supercond. 29, 1500105 (2019). https://doi.org/10.1109/TASC.2018.2880331

    Article  Google Scholar 

  5. B. A. Belyaev, S. A. Khodenkov, An. A. Leksikov, and V. F. Shabanov, Dokl. Phys. 62, 289 (2017). https://doi.org/10.7868/S0869565217180062

    Article  ADS  Google Scholar 

  6. R. Zhang, S. Luo, and L. Zhu, IEEE Trans. Microwave Theory Tech. 65, 815 (2017). https://doi.org/10.1109/TMTT.2016.2636825

    Article  ADS  Google Scholar 

  7. Y. Zhu, K. Song, and Y. Fan, IEEE Access 7, 117219 (2019). https://doi.org/10.1109/ACCESS.2019.2928342

    Article  Google Scholar 

  8. K.-D. Xu, D. Li, and Y. Liu, IEEE Microwave Wireless Comp. Lett. 29, 107 (2019). https://doi.org/10.1109/LMWC.2019.2891203

    Article  Google Scholar 

  9. B. A. Belyaev, S. A. Khodenkov, and V. F. Shabanov, Dokl. Phys. 64, 85 (2019). https://doi.org/10.31857/S0869-5652485127-32

    Article  ADS  Google Scholar 

  10. B. A. Belyaev, A. M. Serzhantov, Y. F. Bal’va, V. V. Tyurnev, A. A. Leksikov, and R. G. Galeev, Microwave Opt. Technol. Lett. 56, 2021 (2014). https://doi.org/10.1002/mop

    Article  Google Scholar 

  11. B. A. Belyaev, A. A. Leksikov, and V. V. Tyurnev, J. Commun. Technol. Electron. 49, 1228 (2004).

    Google Scholar 

Download references

Funding

This study was supported by the Ministry of Science and Higher Education of the Russian Federation, state assignment FEFE-2020-0013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Belyaev.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belyaev, B.A., Khodenkov, S.A., Govorun, I.V. et al. Wideband Microstrip Filters. Tech. Phys. Lett. 47, 321–325 (2021). https://doi.org/10.1134/S1063785021040039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785021040039

Keywords:

Navigation