Skip to main content
Log in

Impact of Pulsed Atmospheric-Pressure Glow Discharge on Nanometer-Thick Aluminum Films

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

The action of positive pulsed corona discharge in air at atmospheric pressure on aluminum thin-film cathode was studied in a 2- to 8-mm-wide gap at 5- to 15-kV voltage, 10- to 15-kHz pulse repetition rate, and pulse amplitude and duration of 10—20 mA and 300—500 ns, respectively. It has been established that, at relatively small average currents of 20—50 μA, the corona discharge near cathode transforms into glow discharge. Due to discharge constriction on a transverse 1-μm scale, the Joule’s heating of a cathode layer can reach up to about 1000 K and produce local erosion of the cathode surface. This mechanism should be taken into account in analysis of the effects accompanying the interaction of discharge plasma with biological objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Yu. K. Stishkov, A. V. Samusenko, and I. A. Ashikhmin, Phys. Usp. 61, 1213 (2018).

    Article  ADS  Google Scholar 

  2. A. Abahazem, A. Mraihi, N. Merbahi, M. Yousfi, and O. Eichwald, IEEE Trans. Plasma Sci. 39, 2230 (2011).

    Article  ADS  Google Scholar 

  3. M. J. Johnson, R. Tirumala, and D. B. Go, J. Electrostat. 74, 8 (2015).

  4. E. Sysolyatina, A. Mukhachev, M. Yurova, M. Grushin, V. Karalnik, A. Petryakov, N. Trushkin, S. Ermolaeva, and Yu. Akishev, Plasma Process. Polym. 11, 315 (2014).

    Article  Google Scholar 

  5. O. A. Emelyanov, N. O. Petrova, N. V. Smirnova, and M. V. Shemet, Tech. Phys. Lett. 43, 742 (2017).

    Article  ADS  Google Scholar 

  6. Yu. P. Raizer, Gas Discharge Physics (Springer, Berlin, 1991; Intellekt, Moscow, 2009).

  7. A. Luque, V. Ratushnaya, and U. Ebert, J. Phys. D: Appl. Phys. 41, 234005 (2008).

    Article  ADS  Google Scholar 

  8. N. Babaeva, W. Tian, and M. J. Kushner, J. Phys. D: Appl. Phys. 47, 235201 (2014).

    Article  ADS  Google Scholar 

  9. M. Černák, T. Hoder, and Z. Bonaventura, Plasma Sources Sci. Technol. 29, 013001 (2020).

    Article  ADS  Google Scholar 

  10. A. A. Kudryavtsev, A. S. Smirnov, and L. D. Tsendin, Physics of Glow Discharge (Lan’, St. Petersburg, 2010) [in Russian].

  11. V. S. Golubev and S. V. Pashkin, High Pressure Glow Discharge (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  12. D. Z. Pai, D. A. Lacoste, and C. O. Laux, J. Appl. Phys. 107, 093303 (2010).

    Article  ADS  Google Scholar 

  13. K. I. Almazova, A. N. Belonogov, V. V. Borovkov, V. S. Kurbanismailov, G. B. Ragimkhanov, A. A. Tren’kin, D. V. Tereshonok, and Z. R. Khalikova, Tech. Phys. Lett. 46, 737 (2020).

    Article  ADS  Google Scholar 

  14. A. A. Tren’kin, K. I. Almazova, A. N. Belonogov, V.  V.  Borovkov, E. V. Gorelov, I. V. Morozov, and S. Yu. Kharitonov, Tech. Phys. 66 (2) (2021, in press).

  15. I. G. Kesaev, Cathode Processes in the Mercury Arc (Nauka, Moscow, 1968; Springer, Berlin, 1964).

  16. V. I. Oreshkin, S. A. Barengol’ts, and S. A. Chaikovsky, Tech. Phys. 52, 642 (2007).

    Article  Google Scholar 

  17. Yu. Akishev, V. Karalnik, I. Kochetov, A. Napartovich, and N. Trushkin, Plasma Sources Sci. Technol. 23, 054013 (2014).

    Article  ADS  Google Scholar 

  18. Sputtering by Particle Bombardment, Ed. by R. Behrisch (Springer, Berlin, 1981), Vol. 1.

    Google Scholar 

  19. O. A. Emelyanov, E. G. Feklistov, N. V. Smirnova, K.  A.  Kolbe, E. V. Zinoviev, M. S. Asadulaev, A. A. Popov, A. S. Shabunin, and K. F. Osmanov, in Proceedings of the International Conference on Advances and Applications in Plasma Physics AAPP 2019, Ed. by M. Tendler, V. Rozhansky, P. Goncharov, and A. Kravchuk, AIP Conf. Proc. 2179, 20006 (2019). https://doi.org/10.1063/1.5135479

Download references

Funding

This work was supported by Academic Excellence Project 5-100 of Peter the Great St. Petersburg Polytechnic University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Emelyanov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by P. Pozdeev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emelyanov, O.A., Plotnikov, A.P. & Feklistov, E.G. Impact of Pulsed Atmospheric-Pressure Glow Discharge on Nanometer-Thick Aluminum Films. Tech. Phys. Lett. 47, 271–274 (2021). https://doi.org/10.1134/S1063785021030196

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785021030196

Keywords:

Navigation