Skip to main content

The Effect of As+ Ion Implantation and Annealing on the Electrical Properties of Near-Surface Layers in Graded-Gap n-Hg0.78Cd0.22Te Films

Abstract

Mercury cadmium telluride n-Hg1 –xCdxTe (HgCdTe) films with near-surface wide-bangap layers were grown by molecular beam epitaxy on Si(013) substrates. Admittance of the metal–insulator–semiconductor (MIS) structure was measured in samples based on the initial HgCdTe film and the same films after implantation with As+ ions and after subsequent thermal annealing. Methods taking into account the presence of near-surface graded-gap layers and slow surface states were used to determine the main parameters of these layers upon technological procedures involved in the production of photodiodes.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. 1

    A. Rogalski, Infrared and Terahertz Detectors (CRC, Taylor and Francis Group, Boca Raton, 2019).

    Book  Google Scholar 

  2. 2

    N. Baier, C. Cervera, O. Gravrand, L. Mollard, C. Lobre, G. Destefanis, G. Bourgeois, J. P. Zanatta, O. Boulade, and V. Moreau, J. Electron. Mater. 44, 3144 (2015). https://doi.org/10.1007/s11664-015-3851-0

    ADS  Article  Google Scholar 

  3. 3

    I. I. Izhnin, A. V. Voitsekhovsky, A. G. Korotaev, O. I. Fitsych, O. Y. Bonchyk, H. V. Savytskyy, K. D. Mynbaev, V. S. Varavin, S. A. Dvoretsky, N. N. Mikhailov, M. V. Yakushev, and R. Jakiela, Infrared Phys. Technol. 81, 52 (2017). https://doi.org/10.1016/j.infrared.2016.12.006

    ADS  Article  Google Scholar 

  4. 4

    C. Shi, C. Lin, Y. Wei, L. Chen, and M. Zhu, Appl. Opt. 55 (34), D101 (2016). https://doi.org/10.1364/AO.55.00D101

    Article  Google Scholar 

  5. 5

    E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology (Wiley-Interscience, New York, 1982).

    Google Scholar 

  6. 6

    V. N. Ovsyuk and A. V. Yartsev, Proc. SPIE 6636, 663617 (2007). https://doi.org/10.1117/12.742637

    Article  Google Scholar 

  7. 7

    A. P. Kovchavtsev, G. Y. Sidorov, A. E. Nastovjak, A. V. Tsarenko, I. V. Sabinina, and V. V. Vasilyev, J. Appl. Phys. 121, 125304 (2017). https://doi.org/10.1063/1.4978967

    ADS  Article  Google Scholar 

  8. 8

    D. V. Gorshkov, G. Yu. Sidorov, I. V. Sabinina, Yu. G. Sidorov, D. V. Marin, and M. V. Yakushev, Tech. Phys. Lett. 46, 741 (2020). https://doi.org/10.1134/S1063785020080064

    ADS  Article  Google Scholar 

  9. 9

    A. V. Voitsekhovskii, S. N. Nesmelov, and S. M. Dzyadukh, J. Phys. Chem. Solids 102, 42 (2017). https://doi.org/10.1016/j.jpcs.2016.10.015

    ADS  Article  Google Scholar 

  10. 10

    A. V. Voitsekhovskii, S. N. Nesmelov, and S. M. Dzyadukh, Prikl. Fiz., No. 3, 15 (2018).

  11. 11

    A. V. Voitsekhovskii, S. N. Nesmelov, and S. M. Dzyadukh, Opto-Electron. Rev. 22, 236 (2014). https://doi.org/10.2478/s11772-014-0198-7

    ADS  Article  Google Scholar 

  12. 12

    A. G. Korotaev, I. I. Izhnin, K. D. Mynbaev, A. V. Voitsekhovskii, S. N. Nesmelov, S. M. Dzyadukh, O. I. Fitsych, V. S. Varavin, S. A. Dvoretsky, N. N. Mikhailov, M. V. Yakushev, O. Yu. Bonchyk, H. V. Savytskyy, Z. Swiatek, and J. Morgiel, Surf. Coat. Technol. 393, 125721 (2020). https://doi.org/10.1016/j.surfcoat.2020.125721

    Article  Google Scholar 

  13. 13

    W. van Gelder and E. H. Nicollian, J. Electrochem. Soc. 118, 138 (1971). https://doi.org/10.1149/1.2407927

    ADS  Article  Google Scholar 

  14. 14

    T. Nakagawa and H. Fujisada, Appl. Phys. Lett. 31, 348 (1977). https://doi.org/10.1063/1.89695

    ADS  Article  Google Scholar 

  15. 15

    A. V. Voitsekhovskii, S. N. Nesmelov, S. M. Dzyadukh, V. S. Varavin, S. A. Dvoretsky, N. N. Mikhailov, M. V. Yakushev, and G. Y. Sidorov, Vacuum 158, 136 (2018). https://doi.org/10.1016/j.vacuum.2018.09.054

    ADS  Article  Google Scholar 

Download references

Funding

This work was supported in part by the Ministry of Science and Higher Education of the Russian Federation, project no. 0721-2020-0038.

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. N. Nesmelov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by P. Pozdeev

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Voitsekhovskii, A.V., Nesmelov, S.N., Dzyadukh, S.M. et al. The Effect of As+ Ion Implantation and Annealing on the Electrical Properties of Near-Surface Layers in Graded-Gap n-Hg0.78Cd0.22Te Films. Tech. Phys. Lett. 47, 189–192 (2021). https://doi.org/10.1134/S1063785021020309

Download citation

Keywords:

  • Hg0.78Cd0.22Te
  • molecular beam epitaxy
  • ion implantation
  • MIS structure
  • admittance.