Skip to main content

Hot-Wire Chemical Vapor Deposition of Fluoropolymer Coatings on Rotating Cylindrical Surfaces


The method of hot-wire activated chemical vapor deposition (HW CVD) of fluoropolymer films has been adapted to obtain fluoropolymer coatings on rotating cylindrical surfaces of small radius (below 20 mm). The influence of the substrate rotation speed on the structure of thin fluoropolymer deposit was studied and revealed significant dependence of the coating morphology on the speed of cylindrical surface rotation, which is an additional parameter that can be used to control the structure of fluoropolymer coating during the HW CVD process.

This is a preview of subscription content, access via your institution.

Fig. 1.


  1. 1

    T. Allred, J. Weibel, and S. Garimella, Phys. Rev. Lett. 120, 174501 (2018).

    ADS  Article  Google Scholar 

  2. 2

    Y. Li, K. Zhang, M.-C. Lu, and C. Duan, Int. J. Heat Mass Transfer 99, 521 (2016).

    Article  Google Scholar 

  3. 3

    I. I. Gogonin, Thermophys. Aeromech. 17, 243 (2010).

    ADS  Article  Google Scholar 

  4. 4

    A. S. Surtaev, V. S. Serdyukov, and A. N. Pavlenko, Nanotechnol. Russ. 11, 696 (2016).

    Article  Google Scholar 

  5. 5

    L. B. Boinovich and A. M. Emelyanenko, Russ. Chem. Rev. 77, 583 (2008).

    ADS  Article  Google Scholar 

  6. 6

    T. Smausz, B. Hopp, and N. Kresz, J. Phys. D: Appl. Phys. 35, 1859 (2002).

    ADS  Article  Google Scholar 

  7. 7

    A. Satyaprasad, V. Jain, and S. K. Nema, Appl. Surf. Sci. 253, 5462 (2007).

    ADS  Article  Google Scholar 

  8. 8

    B. Finke, H. Testrich, H. Rebl, U. Walschus, M. Schlosser, C. Zietz, S. Staehlke, J. B. Nebe, K. D. Weltmann, J. Meichsner, and M. Polak, J. Phys. D: Appl. Phys. 49, 234002 (2016).

    ADS  Article  Google Scholar 

  9. 9

    T. Oya and E. Kusano, Vacuum 83, 564 (2009).

    ADS  Article  Google Scholar 

  10. 10

    K. K. S. Lau, J. A. Caulfield, and K. K. Gleason, Chem. Mater. 12, 3032 (2000).

    Article  Google Scholar 

  11. 11

    K. K. S. Lau, H. G. Pryce Lewis, S. J. Limb, M. C. Kwan, and K. K. Gleason, Thin Solid Films 395, 288 (2001).

    ADS  Article  Google Scholar 

  12. 12

    A. C. Rastogi and S. B. Desu, Polymer 46, 3440 (2005).

    Article  Google Scholar 

  13. 13

    A. I. Safonov, V. S. Sulyaeva, E. Ya. Gatapova, S. V. Starinskiy, N. I. Timoshenko, and O. A. Kabov, Thin Solid Films 653, 165 (2018).

    ADS  Article  Google Scholar 

  14. 14

    D. D. Hass, Y. Marciano, and H. N. G. Wadley, Surf. Coat. Technol. 185, 283 (2004).

    Article  Google Scholar 

  15. 15

    J. Benzi, X.-J. Gu, R. W. Barber, and D. R. Emerson, AIAA J. 54, 670 (2016).

    Article  Google Scholar 

Download references


This work was supported in part by the Russian Science Foundation, project no. 18-79-10119.

Author information



Corresponding author

Correspondence to A. I. Safonov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by P. Pozdeev

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Safonov, A.I., Starinskiy, S.V. & Sulyaeva, V.S. Hot-Wire Chemical Vapor Deposition of Fluoropolymer Coatings on Rotating Cylindrical Surfaces. Tech. Phys. Lett. 47, 205–207 (2021).

Download citation


  • fluoropolymer
  • deposition
  • rotating surface
  • hot-wire activated chemical vapor deposition.