Skip to main content

Assessment of an External Periodic Force Amplitude Using a Small Spike Neuron Network in a Radiophysical Experiment


A method is proposed that enables the amplitude of an external periodic force to be assessed using a small network consisting of oscillators with neuronlike dynamics. The method is based on the dependence of the number of spikes generated by the network on the amplitude of an external signal. The effectiveness of the method has been demonstrated in a radiophysical experiment using the example of a network consisting of FitzHugh–Nagumo generators.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.


  1. 1

    M. I. Rabinovich, P. Varona, A. I. Selverston, and H. D. I. Abarbanel, Rev. Mod. Phys. 78, 1213 (2006).

    ADS  Article  Google Scholar 

  2. 2

    A. S. Dmitrichev, D. V. Kasatkin, V. V. Klin’shov, S. Yu. Kirillov, O. V. Maslennikov, D. S. Shchapin, and V. I. Nekorkin, Izv. Vyssh. Uchebn. Zaved., Prikl. Nelin. Dinam. 26 (4), 5 (2018).

    Article  Google Scholar 

  3. 3

    R. Q. Quiroga and S. Panzeri, Principles of Neural Coding (CRC, Boca Raton, FL, 2013).

    Book  Google Scholar 

  4. 4

    S. A. Lobov, A. V. Chernyshov, N. P. Krilova, M. O. Shamshin, and V. B. Kazantsev, Sensors 20, 500 (2020).

    Article  Google Scholar 

  5. 5

    D. Yu and L. Deng, Automatic Speech Recognition (Springer, Berlin, 2016).

    Book  MATH  Google Scholar 

  6. 6

    N. K. Kasabov, Evolving Connectionist Systems: The Knowledge Engineering Approach (Springer, Berlin, 2007).

    Book  MATH  Google Scholar 

  7. 7

    M. S. Hossain and G. Muhammad, Inform. Fusion 49, 69 (2019).

    Article  Google Scholar 

  8. 8

    S. A. Lobov, A. N. Mikhaylov, M. Shamshin, V. A. Makarov, and V. B. Kazantsev, Front. Neurosci. 14, 88 (2020).

    Article  Google Scholar 

  9. 9

    Z. Bing, C. Meschede, F. Röhrbein, K. Huang, and A. C. Knoll, Front. Neurorobot. 12, 35 (2018).

    Article  Google Scholar 

  10. 10

    N. Novikov and B. Gutkin, Phys. Rev. E 101, 052408 (2020).

    ADS  Article  Google Scholar 

  11. 11

    D. M. Eidum and C. S. Henriquez, Chaos 30, 033105 (2020).

    ADS  MathSciNet  Article  Google Scholar 

  12. 12

    A. V. Andreev, M. V. Ivanchenko, A. N. Pisarchik, and A. E. Hramov, Chaos Solitons Fractals 139, 110061 (2020).

    MathSciNet  Article  Google Scholar 

  13. 13

    M. Rooy, N. A. Novikov, D. G. Zakharov, and B. S. Gutkin, Izv. Vyssh. Uchebn. Zaved., Prikl. Nelin. Dinam. 28 (1), 90 (2020).

    Article  Google Scholar 

  14. 14

    M. A. Dahlem, G. Hiller, A. Panchuk, and E. Schöll, Int. J. Bifurcat. Chaos 19, 745 (2009).

    Article  Google Scholar 

  15. 15

    D. D. Kul’minskii, V. I. Ponomarenko, I. V. Sysoev, and M. D. Prokhorov, Tech. Phys. Lett. 46, 175 (2020).

    ADS  Article  Google Scholar 

Download references


This work was supported by the Russian Science Foundation, project no. 17-72-30003.

Author information



Corresponding author

Correspondence to D. D. Kulminskiy.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by G. Dedkov

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ponomarenko, V.I., Kulminskiy, D.D., Andreev, A.V. et al. Assessment of an External Periodic Force Amplitude Using a Small Spike Neuron Network in a Radiophysical Experiment. Tech. Phys. Lett. 47, 162–165 (2021).

Download citation


  • spike network
  • neuronlike oscillators
  • FitzHugh–Nagumo model
  • radiophysical experiment.