Skip to main content

An Analysis of the Hydrogen Embrittlement Resistance of Aluminum Alloys

Abstract

By means of quantum chemistry, it is established that tungsten and rhenium are most effective alloying elements capable of increasing the resistance of aluminum alloys to hydrogen-induced embrittlement. Tungsten (W) and rhenium (Re) atoms produce strong compression of aluminum lattice, while having sufficiently large covalent radii. In addition, each W and Re atom forms stable chemical bonds with 12 surrounding Al atoms. As a result, W and Re dopants strongly bind Al atoms, thus significantly increasing the energy of vacancy formation and suppressing the process of hydrogen-induced embrittlement. The main mechanical properties of the most hydrogen-resistant aluminum compound, WReAl24, have been calculated using the density functional theory.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. 1

    Aluminium Alloys—Recent Trends in Processing, Characterization, Mechanical Behavior and Applications, Ed. by S. Sivasankaran (InTech, Rijeka, 2017). https://doi.org/10.5772/68032

    Book  Google Scholar 

  2. 2

    L. Soler, J. Macanas, M. Munoz, and J. Casado, J. Power Sources 169, 144 (2007). https://doi.org/10.1016/j.jpowsour.2007.01.080

    ADS  Article  Google Scholar 

  3. 3

    J. B. von Colbe, J.-R. Ares, J. Barale, M. Baricco, C. Buckley, G. Capurso, N. Gallat, D. M. Grant, M. N. Guzik, I. Jacob, E. H. Jensen, T. Jensen, J. Jepsen, T. Klassen, M. V. Lototskyy, et al., Int. J. Hydrogen Energy 44, 7780 (2019). https://doi.org/10.1016/j.ijhydene.2019.01.104

    Article  Google Scholar 

  4. 4

    M. Nagumo, Fundamental of Hydrogen Embrittlement (Springer, Singapore, 2016). https://doi.org/10.1007/978-981-10-0161-1

    Book  Google Scholar 

  5. 5

    J. R. Scully, G. A. Young, and S. W. Smith, in Gaseous Hydrogen Embrittlement of Materials in Energy Technologies, Ed. by R. P. Gangloff and B. P. Somerday (Woodhead, Oxford, 2012), Vol. 1, p. 707.

    Google Scholar 

  6. 6

    D. A. Indeitsev and E. V. Osipova, Tech. Phys. Lett. 45, 882 (2019). https://doi.org/10.1134/S1063785019090074

    ADS  Article  Google Scholar 

  7. 7

    R. V. Regel’, A. I. Slutsker, and E. E. Tomashevskii, The Kinetic Nature of the Strength of Solids (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  8. 8

    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    ADS  Article  Google Scholar 

  9. 9

    B. Cordero, V. Gomez, A. E. Platero-Prats, M. Reves, J. Echeverria, E. Cremades, F. Barragan, and S. Alvarez, Dalton Trans., No. 21, 2832 (2008). https://doi.org/10.1039/B801115J

  10. 10

    V. I. Kolesnikov, Yu. F. Migal, I. V. Kolesnikov, and E. S. Novikov, J. Friction Wear 36, 1 (2015). https://doi.org/10.3103/S1068366615010055

    Article  Google Scholar 

  11. 11

    G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996). https://doi.org/10.1103/PhysRevB.54.11169

    ADS  Article  Google Scholar 

  12. 12

    L. F. Mondolfo, Aluminum Alloys: Structure and Properties (Butterworth, London, 1976).

  13. 13

    D. A. Indeitsev and E. V. Osipova, Phys. Solid State 51, 1901 (2009).

    ADS  Article  Google Scholar 

  14. 14

    D. A. Indeitsev and E. V. Osipova, Dokl. Phys. 56, 523 (2011).

    ADS  Article  Google Scholar 

  15. 15

    G. Simmons and H. Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties, A Handbook (MIT Press, Cambridge, 1971).

    Google Scholar 

  16. 16

    D. A. Indeitsev and E. V. Osipova, Dokl. Phys. Chem. 484, 4 (2019). https://doi.org/10.31857/S0869-5652484156-60

    Article  Google Scholar 

Download references

Funding

This work was performed in the framework of a state assignment to the Institute of Problems of Mechanical Engineering (Russian Academy of Sciences, St. Petersburg), project no. AAAA-A18-118012790011-3.

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. V. Osipova.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by P. Pozdeev

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Indeitsev, D.A., Osipova, E.V. An Analysis of the Hydrogen Embrittlement Resistance of Aluminum Alloys. Tech. Phys. Lett. 47, 170–173 (2021). https://doi.org/10.1134/S1063785021020231

Download citation

Keywords:

  • hydrogen-induced embrittlement
  • density functional theory
  • aluminum alloys.