Skip to main content

Optimization of Fill Factor Equation in Halbach Design

Abstract

Selection (spatial in homogenous) and excitation (spatially homogenous) fields are designed with Halbach magnets for magnetic particle imaging (MPI) and magnetic resonance imaging (MRI). Permanent magnet parameters (length and remanent flux density) and geometrical parameters (fill factor (FF), number of magnets, and system radius) are key factors for Halbach applications. The effect of fill factor ratio at magnetic flux density was investigated with 4 and 8 cylindrical magnets. A new mathematical expression was developed for accurate placement of the magnets even at 100% filling ratio (FF = 1). Numerical simulations were conducted for the proposed model and magnetic flux density of 4 magnets system was 17% more accurate as compared to the model in the literature.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. 1

    J. C. Mallinson, IEEE Trans. Magn. 9, 678 (1973).

    ADS  Article  Google Scholar 

  2. 2

    K. Halbach, IEEE Trans. Nucl. Sci. 26, 3882 (1979).

    ADS  Article  Google Scholar 

  3. 3

    K. Halbach, Nucl. Instrum. Methods Phys. Res. 169, 1 (1980).

    ADS  Article  Google Scholar 

  4. 4

    M. W. Vogel, A. Giorni, V. Vegh, R. Pellicer-Guridi, and D. C. Reutens, PLoS One 11 (6) (2016).

  5. 5

    K. Turek and P. Liszkowski, J. Magn. Reson. 238, 52 (2014).

    ADS  Article  Google Scholar 

  6. 6

    C. W. Windt, H. Soltner, D. van Dusschoten, and P. A. Blümler, J. Magn. Reson. 208, 27 (2011).

    ADS  Article  Google Scholar 

  7. 7

    S. Anferova, V. Anferov, J. Arnold, E. Talnishnikh, M. A. Voda, K. Kupferschläger, and B. Blümich, Magn. Reson. Imaging 25, 474 (2007).

    Article  Google Scholar 

  8. 8

    C. Z. Cooley, J. P. Stockmann, B. D. Armstrong, M. Sarracanie, M. H. Lev, M. S. Rosen, and L. L. Wald, Magn. Reson. Med. 73, 872 (2015).

    Article  Google Scholar 

  9. 9

    C. Zimmerman Cooley, M. W. Haskell, S. F. Cauley, C. Sappo, C. D. Lapierre, C. G. Ha, and L. L. Wald, IEEE Trans. Magn. 54 (1) (2017).

  10. 10

    J. Konkle, P. Goodwill, and S. Conolly, in Medical Imaging 2011: Biomedical Applications in Molecular, Structural, and Functional Imaging, Proc. SPIE 7965, 79650X (2011).

    ADS  Article  Google Scholar 

  11. 11

    M. Weber, J. Beuke, and A. von Gladiss, Int. J. Magn. Part. Imaging 4 (2) (2018).

  12. 12

    H. Bagheri, C. A. Kierans, K. J. Nelson, B. A. Andrade, C. L. Wong, A. L. Frederick, and M. E. Hayden, in Proceedings of the 5th International Workshop on Magnetic Particle Imaging (IWMPI), Istanbul, Turkey, March 26–28, 2015 (IEEE, 2015), p. 1.

  13. 13

    P. Babinec, A. Krafčík, M. Babincová, and J. Rosenecker, Med. Biol. Eng. Comput. 48, 745 (2010).

    Article  Google Scholar 

  14. 14

    A. Sarwar, A. Nemirovski, and B. Shapiro, J. Magn. Magn. Mater. 324, 742 (2012).

    ADS  Article  Google Scholar 

  15. 15

    H. Soltner and P. Blümler, Concepts Magn. Reson., Part A 36, 211 (2010).

    Google Scholar 

  16. 16

    F. Balcı, Master Thesis (Yıldız Tech. Univ., Istanbul, 2020).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Bingolbali.

Ethics declarations

CONFLICT OF INTEREST

This work was supported by the Scientific and Technological Research Council of Turkey under Grant TUBITAK 115E776&115E777.

FUNDUNG

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Balcı, F., Bingolbali, A., Dogan, N. et al. Optimization of Fill Factor Equation in Halbach Design. Tech. Phys. Lett. 47, 158–161 (2021). https://doi.org/10.1134/S106378502102019X

Download citation

Keywords:

  • Halbach magnets
  • fill factor (FF)
  • magnetic particle imaging (MPI)
  • magnetic resonance imaging (MRI).