Skip to main content

Determination of Elastic Modulus of SiC-Based Composite Ceramics


Young’s modulus for heterophase composite silicon carbide ceramics with different phase ratios has been determined by two independent techniques. The applicability of the Voigt–Reuss–Hill model has been tested to the calculation of the effective Young’s modulus by the measured properties of ceramic components. It is established that the calculated data and results of independent measurements by dynamic indentation are close. It is shown that the advantage of the calculation method is a narrower range of the obtained values of Young’s modulus. At the same time, its application requires additional measurements of ceramic composition and mechanical properties of the components.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.


  1. 1

    I. A. Birger and R. R. Mavlyutov, Strength of Materials (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  2. 2

    GOST (State Standard) No. 1497–84 (ISO 6892-84), Metals. Tensile test methods (2005).

  3. 3

    GOST (State Standard) No. 24409–80, Ceramic electrical materials. Test methods (2005).

  4. 4

    J. E. Zorzi and C. A. Perottoni, Mater. Sci. Eng. A 574, 25 (2013).

    Article  Google Scholar 

  5. 5

    C. Reynaud, F. Thevenot, T. Chartier, and J.-L. Besson, J. Eur. Ceram. Soc. 25, 589 (2005).

    Article  Google Scholar 

  6. 6

    A. A. Karabutov, T. B. Podymova, and E. B. Cherepetskaya, J. Appl. Mech. Tech. Phys. 54, 500 (2013).

    ADS  Article  Google Scholar 

  7. 7

    K. T. Tazhibaev and M. Zh. Ormonov, Probl. Sovrem. Nauki Obrazov. 9 (91), 52 (2017).

    Google Scholar 

  8. 8

    B. E. Pobedrya, Mechanics of Composite Materials (Mosk. Gos. Univ., Moscow, 1984) [in Russian].

    MATH  Google Scholar 

  9. 9

    G. Grimvall, Thermophysical Properties of Materials (Elsevier Science B.V., Amsterdam, 1999).

    Google Scholar 

  10. 10

    L. L. Snead, T. Nozawa, Y. Katoh, T. S. Byun, S. Kondo, and D. Petti, J. Nucl. Mater. 371, 329 (2007).

    ADS  Article  Google Scholar 

  11. 11

    P. S. Grinchuk, M. V. Kiyashko, H. M. Abuhimd, M. S. Alshahrani, M. O. Stepkin, V. V. Toropov, A. A. Khort, D. V. Solovei, A. V. Akulich, M. D. Shashkov, and M. Yu. Liakh, J. Eur. Ceram. Soc. 38, 4815 (2018).

    Article  Google Scholar 

  12. 12

    P. S. Grinchuk, Kh. Abukhimd, A. V. Akulich, M. V. Kiyashko, D. V. Solovei, M. O. Stepkin, V. V. Toropov, M. D. Shashkov, A. A. Khort, and M. Yu. Lyakh, Dokl. NAN Belarusi 63, 223 (2019).

    Article  Google Scholar 

  13. 13

    A. P. Kren and T. A. Protasenya, Russ. J. Nondestr. Test. 50, 419 (2014).

    Article  Google Scholar 

  14. 14

    M. A. Hopcroft, W. D. Nix, and T. W. Kenny, J. Microelectromech. Syst. 19, 229 (2010).

    Article  Google Scholar 

Download references


This work was supported by King Abdulaziz City for Science and Technology (Saudi Arabia).

Author information



Corresponding author

Correspondence to P. S. Grinchuk.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by N. Saetova

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kiyashko, M.V., Grinchuk, P.S., Kuznetsova, T.A. et al. Determination of Elastic Modulus of SiC-Based Composite Ceramics. Tech. Phys. Lett. 47, 150–153 (2021).

Download citation


  • ceramics
  • silicon carbide
  • Young’s modulus
  • nanoindentation
  • dynamic indentation.