Skip to main content
Log in

Synthesizer of Discrete Frequency Spectrum Based on an Antiferromagnetic Spintronic Oscillator

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

Dynamics of a filter-free synthesizer of discrete frequency spectrum based on the phase-locked system of an antiferromagnetic spintronic oscillator, which generates THz oscillations in a wide frequency range under dc current, was investigated. The dependence of the phase-locked-loop gain on the difference between the frequencies of phase-locked oscillations at different feedback division factors is obtained by the method of slowly varying amplitudes. It is shown that an increase in the division factor narrows the band of phase-locked oscillations at invariable parameters of the antiferromagnetic spintronic oscillator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. V. Baltz, A. Manchon, M. Tsoi, T. Moriyama, T. Ono, and Y. Tserkovnyak, Rev. Mod. Phys. 90, 015005 (2018).

    Article  ADS  Google Scholar 

  2. J. Walowski and M. Munzenverg, J. Appl. Phys. 120, 140901 (2016).

    Article  ADS  Google Scholar 

  3. P. Nemec, M. Fiebig, T. Kampfrath, and A. V. Kimel, Nat. Phys. 14, 229 (2018).

    Article  Google Scholar 

  4. T. Jungwirt, X. Marti, P. Wadley, and J. Wunderlich, Nat. Nanotechnol. 11, 231 (2016).

    Article  ADS  Google Scholar 

  5. M. B. Jungfleisch, W. Zhang, and A. Hoffman, Phys. Lett. A 382, 865 (2018).

    Article  ADS  Google Scholar 

  6. J. Železný, P. Wadley, K. Olejnik, A. Hoffmann, and H. Ohno, Nat. Phys. 14, 220 (2018).

    Article  Google Scholar 

  7. E. Gomonay and V. Loktev, Low Temp. Phys. 40, 22 (2014).

    Article  ADS  Google Scholar 

  8. E. A. Turov, A. V. Kolchanov, V. V. Men’shenin, I. F. Mirsaev, and V. V. Nikolaev, Symmetry and Physical Properties of Antiferromagnets (Fizmatlit, Moscow, 2001) [in Russian].

    Google Scholar 

  9. M. A. Shamsutdinov, I. Yu. Lomakina, V. N. Nazarov, A. T. Kharisov, and D. M. Shamsutdinov, Ferro- and Antiferromagnetodynamics. Nonlinear Vibrations, Waves and Solitons (Nauka, Moscow, 2009) [in Russian].

    Google Scholar 

  10. A. M. Kosevich, B. A. Ivanov, and A. S. Kovalev, Nonlinear Waves of Magnetization. Dynamic and Topological Solitons (Nauk. Dumka, Kiev, 1983) [in Russian].

    Google Scholar 

  11. R. Khymyn, I. Lisenkov, V. Tiberkevich, B. Ivanov, and A. Slavin, Sci. Rep. 7, 43705 (2017).

    Article  ADS  Google Scholar 

  12. R. Khymyn, V. Tiberkevich, and A. Slavin, AIP Adv. 7, 055931 (2017).

    Article  ADS  Google Scholar 

  13. R. Khymyn, I. Lisenkov, V. S. Tiberkevich, A. N. Slavin, and B. A. Ivanov, Phys. Rev. B 93, 224421 (2016).

    Article  ADS  Google Scholar 

  14. U. Rohde, A. Poddar, and G. Böck, The Design of Modern Microwave Oscillators for Wireless Applications: Theory and Optimization (Wiley, NJ, 2005).

    Book  Google Scholar 

  15. K. Mishagin and V. Shalfeev, Tech. Phys. Lett. 36, 1049 (2010).

    Article  ADS  Google Scholar 

  16. A. A. Mitrofanov, A. R. Safin, and N. N. Udalov, Tech. Phys. Lett. 40, 571 (2014).

    Article  ADS  Google Scholar 

  17. A. A. Mitrofanov, A. R. Safin, and N. N. Udalov, Tech. Phys. Lett. 41, 778 (2015).

    Article  ADS  Google Scholar 

  18. A. Mitrofanov, A. Safin, N. Udalov, and M. Kapranov, J. Appl. Phys. 122, 123903 (2017).

    Article  ADS  Google Scholar 

  19. S. Tamaru, H. Kubota, K. Yakushiji, S. Yuasa, and A. Fukushima, Sci. Rep. 5, 18134 (2015).

    Article  ADS  Google Scholar 

  20. O. Sulymenko, O. Prokopenko, V. Tiberkevich, A. Slavin, B. Ivanov, and R. Khymyn, Phys. Rev. Appl. 8, 064007 (2017).

    Article  ADS  Google Scholar 

  21. O. Sulymenko, O. Prokopenko, V. Tyberkevich, and A. Slavin, IEEE Magn. Lett. 9, 3104605 (2018).

    Article  Google Scholar 

  22. B. A. Ivanov, J. Exp. Theor. Phys. 131 (2020, in press).

  23. O. Gomonay, T. Jungwirth, and J. Sinova, Phys. Rev. B 98, 104430 (2018).

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research (projects nos. 18-37-20048, 18-29-27018, 18-07-00509, 18-57-76001, 18-57-16001, and 19-29-03015) and performed within the framework of state order to the Russian Foundation no. 0030-2019-0013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Safin.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by A. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safin, A.R., Popov, P.A., Kalyabin, D.V. et al. Synthesizer of Discrete Frequency Spectrum Based on an Antiferromagnetic Spintronic Oscillator. Tech. Phys. Lett. 46, 1016–1019 (2020). https://doi.org/10.1134/S1063785020100272

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785020100272

Keywords:

Navigation