Skip to main content
Log in

Submerged Jet Generation by Laser Heating of a Liquid Surface

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

It is experimentally established that heating of the surface of water by continuous laser radiation at a 1.94-μm wavelength via optic fiber leads to the generation of two jets: a (i) submerged jet directed into the liquid and (ii) a counterjet directed upward into the atmosphere. The jets are generated upon coalescence of the gas cavity formed during the explosive boiling of water caused by the absorption of laser radiation immediately under the edge of the vertical optic fiber. Possible mechanisms of jet formation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. F. Reuter and R. Mettin, Ultrason. Sonochem. 29, 550 (2016).

    Google Scholar 

  2. R. Dijkink, S. Le Gac, E. Nijhuis, A. van den Berg, I. Vermes, A. Poot, and C.-D. Ohl, Phys. Med. Biol. 53, 375 (2008).

    Google Scholar 

  3. E. I. Nesis, Boiling Liquids (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  4. V. M. Chudnovskii, A. A. Levin, V. I. Yusupov, M. A. Guzev, and A. A. Chernov, Int. J. Heat Mass Transfer 150, 119286 (2020).

    Google Scholar 

  5. J. F. Lu and X. F. Peng, Int. J. Heat Mass Transfer 50, 3966 (2007).

    Google Scholar 

  6. S. A. Zhukov, S. Yu. Afanas’ev, and S. B. Echmaev, Int. J. Heat Mass Transfer 46, 3411 (2003).

    Google Scholar 

  7. F. Li, S. R. Gonzalez-Avila, D. M. Nguyen, and C.-D. Ohl, Phys. Rev. Fluids 2, 014007 (2017).

    ADS  Google Scholar 

  8. A. M. Zhang, P. Cui, and Y. Wang, Exp. Fluids 54, 1602 (2013).

    Google Scholar 

  9. A. Vogel and V. Venugopalan, Chem. Rev. 103, 577 (2003).

    Google Scholar 

  10. V. Robles, E. Gutierrez-Herrera, L. F. Devia-Cruz, D. Banks, S. Camacho-Lopez, and G. Aguilar, Phys. Fluids 32, 042005 (2020).

    ADS  Google Scholar 

  11. A. V. Mikheenko, Vestn. Tikhookean. Univ., No. 4 (39), 41 (2015).

  12. R. Deng, Y. He, Y. Qin, Q. Chen, and L. Chen, J. Remote Sens. 16, 192 (2012).

    Google Scholar 

  13. S. B. Rutin and P. V. Skripov, Thermochim. Acta 562, 70 (2013).

    Google Scholar 

  14. A. L. Gurashkin, A. A. Starostin, and P. V. Skripov, Tech. Phys. Lett. 46, 617 (2020).

    ADS  Google Scholar 

  15. J. M. Aristoff and J. W. Bush, J. Fluid Mech. 619, 45 (2009).

    ADS  MathSciNet  Google Scholar 

Download references

Funding

This work was partly supported by the Ministry of Science and Higher Education of the Russian Federation in the framework of a state order to the Crystallography and Photonics Federal Scientific Research Center of the Russian Academy of Sciences (Troitsk) in the part of thermocavitation, Federal Project АААА-А20-120031890011-8 in the part of hydrodynamics, and Russian Foundation for Basic Research (project no. 18-02-00165) in the part of laser radiation application in medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Chudnovskii.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by P. Pozdeev

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chudnovskii, V.M., Yusupov, V.I. Submerged Jet Generation by Laser Heating of a Liquid Surface. Tech. Phys. Lett. 46, 1024–1027 (2020). https://doi.org/10.1134/S1063785020100211

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785020100211

Keywords:

Navigation