Skip to main content
Log in

Nonlinear Optical Diagnostics of Thin Polycrystalline Lead Zirconate Titanate Films

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

Nonlinear optical microscopy techniques have been used to study thin films of single-phase (perovskite) and two-phase (perovskite–pyrochlore) lead zirconate titanate (PZT) deposited on Pt/TiO2/SiO2/Si by means of radio-frequency magnetron sputtering at various target–substrate distances (D = 30–70 mm). Results revealed inhomogeneous distribution of second-harmonic generation in spherulitic perovskite islands, including increased signal intensity at perovskite/pyrochlore interface, which may be related to a nonuniform distribution of mechanical stresses. Factors responsible for the observed strong variation in second-harmonic signal are discussed, including the mutual relationship between changes in the character of spherulitic structure and conditions of PZT film deposition depending on the target–substrate distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. K. A. Vorotilov, V. M. Mukhortov, and A. S. Sigov, Integrated Ferroelectric Devices (Energoatomizdat, Moscow, 2011) [in Russian].

    Google Scholar 

  2. G. T. Hwang, V. Annapureddy, J. H. Han, D. J. Joe, C. Baek, D. Y. Park, D. H. Kim, J. H. Park, C. K. Jeong, K. I. Park, J. J. Choi, D. K. Kim, J. Ryu, and K. J. Lee, Adv. Energy Mater. 6, 1600237 (2016). https://doi.org/10.1002/aenm.201600237

    Article  Google Scholar 

  3. H. G. Yeo, X. Ma, C. Rahn, and S. Trolier-McKinstry, Adv. Funct. Mater. 26, 5940 (2016). https://doi.org/10.1002/adfm.201601347

    Article  Google Scholar 

  4. P. Muralt, J. Am. Ceram. Soc. 91, 1385 (2008). https://doi.org/10.1111/j.1551-2916.2008.02421.x

    Article  Google Scholar 

  5. P. Muralt, Rep. Prog. Phys. 64, 1339 (2001). https://doi.org/10.1007/0-387-23319-9_5

    Article  ADS  Google Scholar 

  6. J. F. Scott, Science (Washington, DC, U. S.) 315 (5814), 954 (2007). https://doi.org/10.1126/science.1129564

    Article  ADS  Google Scholar 

  7. K. Iijima, I. Ueda, and K. Kugimiya, Jpn. J. Appl. Phys. 30, 2149 (1991).

    Article  ADS  Google Scholar 

  8. K. Suu, T. Masuda, Y. Nishioka, and N. Tani, in Proceedings of the 11th IEEE International Symposium on Applications of Ferroelectrics (ISAF XI'98), Montreux, Switzerland,1998, p. 19.

  9. M. H. S. Alrashda, A. A. Hamzah, and B. Y. Majlis, in Proceedings of the 2015 IEEE Regional Symposium on Micro and Nanoelectronics (RSM) (IEEE, 2015), p. 1. https://doi.org/10.1109/RSM.2015.7355018

  10. N. V. Mukhin and D. A. Chigirev, J. Phys.: Conf. Ser. 872, 012045 (2017). https://doi.org/10.1088/1742-6596/872/1/012045

    Article  Google Scholar 

  11. V. V. Osipov, E. Yu. Kaptelov, S. V. Senkevich, D. A. Kiselev, and I. P. Pronin, Ferroelectrics 535, 78 (2018). https://doi.org/10.1080/00150193.2018.1432931

    Article  Google Scholar 

  12. S. A. Denev, T. T. Lummen, E. Barnes, A. Kumar, and V. Gopalan, J. Am. Ceram. Soc. 94, 2699 (2011). https://doi.org/10.1111/j.1551-2916.2011.04740.x

    Article  Google Scholar 

  13. A. M. Buryakov, Ross. Tekhnol. Zh. 5 (2), 22 (2017). https://doi.org/10.32362/2500-316X-2017-5-2-22-31

    Article  Google Scholar 

  14. G. Dolino, J. Lajzerowicz, and M. Vallade, Phys. Rev. B 2, 2194 (1970). https://doi.org/10.1103/PhysRevB.2.2194

    Article  ADS  Google Scholar 

  15. B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric Ceramics (Academic, London, 1971).

    Google Scholar 

  16. B. Noheda and D. E. Cox, Phase Trans. 79, 5 (2006). https://doi.org/10.1080/01411590500467262

    Article  Google Scholar 

  17. V. P. Pronin, D. M. Dolgintsev, V. V. Osipov, I. P. Pronin, S. V. Senkevich, and E. Y. Kaptelov, Mater. Sci. Eng. 387, 012063 (2018).

    Google Scholar 

  18. R. Gauderon, P. B. Lukins, and C. J. R. Sheppard, Opt. Lett. 23, 1209 (1998). https://doi.org/10.1364/OL.23.001209

    Article  ADS  Google Scholar 

  19. I. P. Pronin, E. Yu. Kaptelov, S. V. Senkevich, V. A. Klimov, N. V. Zaitseva, T. A. Shaplygina, and S. A. Kuku-shkin, Phys. Solid State 52, 132 (2010). https://doi.org/10.1134/S1063783410010233

    Article  ADS  Google Scholar 

  20. M. Bertocchi, E. Luppi, E. Degoli, V. Véniard, and S. Ossicini, J. Chem. Phys. 140, 214705 (2014). https://doi.org/10.1063/1.4880756

    Article  ADS  Google Scholar 

  21. I. P. Pronin, E. Yu. Kaptelov, S. V. Senkevich, D. A. Kiselev, V. V. Osipov, and V. P. Pronin, Phys. Solid State 61, 2376 (2019). https://doi.org/10.1134/S1063783419120424

    Article  ADS  Google Scholar 

  22. I. Yu. Tentilova, S. A. Kukushkin, E. Yu. Kaptelov, I. P. Pronin, and V. L. Ugolkov, Tech. Phys. Lett. 37, 163 (2011). https://doi.org/10.1134/S1063785011020295

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported in part in the framework of a state order (project no. FSFZ-2020-0022) for E.D. Mishina and by the Program of Grants for Young MIREA–RTU Scientists (project no. NICh-43) for A.S. Elshin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Elshin.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by P. Pozdeev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elshin, A.S., Pronin, I.P., Senkevich, S.V. et al. Nonlinear Optical Diagnostics of Thin Polycrystalline Lead Zirconate Titanate Films. Tech. Phys. Lett. 46, 385–388 (2020). https://doi.org/10.1134/S1063785020040215

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785020040215

Keywords:

Navigation