Skip to main content
Log in

Kinetics of Nucleus Growth from a Nanophase

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

The kinetics of nucleus growth from a parent nanophase medium with a limited stock of material has been theoretically studied in the presence of possible growth arrest caused by destruction of the source of supersaturation. This regime is characteristic of the island growth of GaAs nanowires (NWs) from a Ga nanodroplet via the vapor–liquid–solid (VLS) mechanism as observed during in situ diagnostics of NW growth inside a transmission electron microscope. A fundamentally new hierarchy of time scales is established, according to which the entire cycle of monocentric nucleation and growth can be divided into three stages: (i) fast growth of nucleus until the growth arrest, (ii) slow growth at a rate of material supply to the nanophase, and (iii) nanophase pumping up to the initial state. The criterion of growth arrest is formulated as dependent on the nanophase size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. J. W. P. Schmelzer and A. S. Abyzov, J. Chem. Phys. 134, 054511 (2011).

    Article  ADS  Google Scholar 

  2. V. G. Dubrovskii, Cryst. Growth Des. 17, 2589 (2017).

    Article  Google Scholar 

  3. R. S. Wagner and W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964).

    Article  ADS  Google Scholar 

  4. V. G. Dubrovskii, in Semiconductors and Semimetals, Ed. by A. Fontcuberta i Morral, S. A. Dayeh, and C. Jagadish (Academic, Burlington, 2015), Vol. 93, p. 1.

    Google Scholar 

  5. C. Colombo, D. Spirkoska, M. Frimmer, G. Abstreiter, and A. Fontcuberta i Morral, Phys. Rev. B 77, 155326 (2008).

    Article  ADS  Google Scholar 

  6. F. Matteini, V. G. Dubrovskii, D. Rüffer, G. Tütüncüoğ lu, Y. Fontana, and A. Fontcuberta i Morral, Nanotecnology 26, 105603 (2015).

    Article  ADS  Google Scholar 

  7. F. Glas, J. C. Harmand, and G. Patriarche, Phys. Rev. Lett. 99, 146101 (2007).

    Article  ADS  Google Scholar 

  8. V. G. Dubrovskii, N. V. Sibirev, J. C. Harmand, and F. Glas, Phys. Rev. B 78, 235301 (2008).

    Article  ADS  Google Scholar 

  9. F. Glas, J. C. Harmand, and G. Patriarche, Phys. Rev. Lett. 104, 135501 (2010).

    Article  ADS  Google Scholar 

  10. V. G. Dubrovskii, Phys. Rev. B 87, 195426 (2013).

    Article  ADS  Google Scholar 

  11. C.-Y. Wen, J. Tersoff, K. Hillerich, M. C. Reuter, J. H. Park, S. Kodambaka, E. A. Stach, and F. M. Ross, Phys. Rev. Lett. 107, 025503 (2011).

    Article  ADS  Google Scholar 

  12. D. Jacobsson, F. Panciera, J. Tersoff, M. C. Reuter, S. Lehmann, S. Hofmann, K. A. Dick, and F. M. Ross, Nature (London, U.K.) 531, 317 (2016).

    Article  ADS  Google Scholar 

  13. J. C. Harmand, G. Patriarche, F. Glas, F. Panciera, I. Florea, J.-L. Maurice, L. Travers, and Y. Ollivier, Phys. Rev. Lett. 121, 166101 (2018).

    Article  ADS  Google Scholar 

  14. F. Glas, M. R. Ramdani, G. Patriarche, and J. C. Harmand, Phys. Rev. B 88, 195304 (2013).

    Article  ADS  Google Scholar 

  15. F. Glas and V. G. Dubrovskii, Phys. Rev. Mater. 1, 036003 (2017).

  16. V. G. Dubrovskii J. Chem. Phys. 131, 164514 (2009).

    Article  ADS  Google Scholar 

  17. V. G. Dubrovskii and J. Grecenkov, Cryst. Growth Des. 15, 340 (2015).

    Article  Google Scholar 

  18. V. G. Dubrovskii, Phys. Status Solidi B 171, 345 (1992).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported in part by the Russian Foundation for Basic Research, projects nos. 18-02-40006, 19-52-53031, and 20-02-00351.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Dubrovskii.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by P. Pozdeev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubrovskii, V.G. Kinetics of Nucleus Growth from a Nanophase. Tech. Phys. Lett. 46, 357–360 (2020). https://doi.org/10.1134/S1063785020040203

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785020040203

Keywords:

Navigation