The Effect of the Polarization Characteristics of Probe Light on the Signal of Optically Detected Magnetic Resonance in Magnetometric and Gyroscopic Quantum Sensors

Abstract

We consider the effect of the polarization characteristics of probe light on the signal of optically detected magnetic resonance in quantum sensors, including quantum magnetometers based on the phenomenon of electron paramagnetic resonance and quantum gyroscopes employing both the electron and nuclear magnetic resonance. Relationships between the magnetic resonance signal magnitude and parameters of the optical system elements, which are based on the Stokes–Mueller formalism, are derived and verified. It is found that the main destructive influence in the signal in a standard two-beam scheme is produced by phase delays introduced by both metallic and dielectric mirrors. Methods for compensation of this destructive influence are proposed and verified.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. 1

    D. Budker and M. Romalis, Nat. Phys. 3, 227 (2007).

    Article  Google Scholar 

  2. 2

    E. B. Aleksandrov and A. K. Vershovskii, Phys. Usp. 52, 605 (2009).

    Article  Google Scholar 

  3. 3

    D. K. Serkland, K. M. Geib, G. M. Peake, R. Lutwak, A. Rashed, M. Varghese, G. Tepolt, and M. Prouty, Proc. SPIE 6484, 648406 (2007).

    Article  Google Scholar 

  4. 4

    N. A. Maleev, S. A. Blokhin, M. V. Bobrov, A. G. Kuz’menkov, M. M. Kulagina, and V. M. Ustinov, Girosk. Navig. 26 (1), 81 (2018).

    Article  Google Scholar 

  5. 5

    V. K. Shah and R. T. Wakai, Phys. Med. Biol. 58, 8153 (2013).

    Article  Google Scholar 

  6. 6

    H. Korth, K. Strohbehn, F. Tejada, A. G. Andreou, J. Kitching, S. Knappe, S. J. Lehtonen, S. M. London, and M. Kafel, J. Geophys. Res. Space Phys. 121, 7870 (2016).

    ADS  Article  Google Scholar 

  7. 7

    T. G. Walker and M. S. Larsen, Advances in Atomic, Molecular, and Optical Ohysics, Ed. by E. Arimondo, C. C. Lin, and S. F. Yelin (Academic, New York, 2016), Vol. 65, p. 373.

    Google Scholar 

  8. 8

    A. K. Vershovskii, Yu. A. Litmanovich, A. S. Pazgalev, and V. G. Peshekhonov, Girosk. Navig. 26 (1), 55 (2018).

    Article  Google Scholar 

  9. 9

    N. D. Bhaskar, J. Camparo, W. Happer, and A. Sharma, Phys. Rev. A 23, 3048 (1981).

    ADS  Article  Google Scholar 

  10. 10

    I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, Nature (London, U.K.) 422 (6932), 596 (2003).

    ADS  Article  Google Scholar 

  11. 11

    M. P. Ledbetter, I. M. Savukov, V. M. Acosta, D. Budker, and M. V. Romalis, Phys. Rev. A 77, 033408 (2008).

    ADS  Article  Google Scholar 

  12. 12

    E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Munoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes, Nature (London, U.K.) 555, 657 (2018).

    ADS  Article  Google Scholar 

  13. 13

    W. E. Bell and A. L. Bloom, Phys. Rev. 107, 1559 (1957).

    ADS  Article  Google Scholar 

  14. 14

    L. L. Smith and P. M. Koch, J. Opt. Soc. Am. A 13, 2102 (1996).

    ADS  Article  Google Scholar 

  15. 15

    E. J. Galvez and P. M. Koch, J. Opt. Soc. Am. A 14, 3410 (1997).

    ADS  Article  Google Scholar 

  16. 16

    A. K. Vershovskii and A. S. Pazgalev, Tech. Phys. 53, 646 (2008).

    Article  Google Scholar 

  17. 17

    W. H. McMaster, Am. J. Phys. 22, 351 (1954).

    ADS  Article  Google Scholar 

  18. 18

    W. H. McMaster, Rev. Mod. Phys. 33, 8 (1961).

    ADS  MathSciNet  Article  Google Scholar 

  19. 19

    M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge Univ. Press, Cambridge, 1999), p. 621.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to V.S. Zapasskii for his interest in this investigation and fruitful discussions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. K. Vershovskii.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by P. Pozdeev

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vershovskii, A.K., Dmitriev, S.P., Pazgalev, A.S. et al. The Effect of the Polarization Characteristics of Probe Light on the Signal of Optically Detected Magnetic Resonance in Magnetometric and Gyroscopic Quantum Sensors. Tech. Phys. Lett. 45, 1012–1015 (2019). https://doi.org/10.1134/S1063785019100304

Download citation

Keywords:

  • optically detected magnetic resonance
  • quantum magnetometer
  • polarization of light.