Technical Physics Letters

, Volume 45, Issue 10, pp 1012–1015 | Cite as

The Effect of the Polarization Characteristics of Probe Light on the Signal of Optically Detected Magnetic Resonance in Magnetometric and Gyroscopic Quantum Sensors

  • A. K. VershovskiiEmail author
  • S. P. Dmitriev
  • A. S. Pazgalev
  • M. V. Petrenko


We consider the effect of the polarization characteristics of probe light on the signal of optically detected magnetic resonance in quantum sensors, including quantum magnetometers based on the phenomenon of electron paramagnetic resonance and quantum gyroscopes employing both the electron and nuclear magnetic resonance. Relationships between the magnetic resonance signal magnitude and parameters of the optical system elements, which are based on the Stokes–Mueller formalism, are derived and verified. It is found that the main destructive influence in the signal in a standard two-beam scheme is produced by phase delays introduced by both metallic and dielectric mirrors. Methods for compensation of this destructive influence are proposed and verified.


optically detected magnetic resonance quantum magnetometer polarization of light. 



We are grateful to V.S. Zapasskii for his interest in this investigation and fruitful discussions.


The authors declare that they have no conflict of interest.


  1. 1.
    D. Budker and M. Romalis, Nat. Phys. 3, 227 (2007).CrossRefGoogle Scholar
  2. 2.
    E. B. Aleksandrov and A. K. Vershovskii, Phys. Usp. 52, 605 (2009).CrossRefGoogle Scholar
  3. 3.
    D. K. Serkland, K. M. Geib, G. M. Peake, R. Lutwak, A. Rashed, M. Varghese, G. Tepolt, and M. Prouty, Proc. SPIE 6484, 648406 (2007).CrossRefGoogle Scholar
  4. 4.
    N. A. Maleev, S. A. Blokhin, M. V. Bobrov, A. G. Kuz’menkov, M. M. Kulagina, and V. M. Ustinov, Girosk. Navig. 26 (1), 81 (2018).CrossRefGoogle Scholar
  5. 5.
    V. K. Shah and R. T. Wakai, Phys. Med. Biol. 58, 8153 (2013).CrossRefGoogle Scholar
  6. 6.
    H. Korth, K. Strohbehn, F. Tejada, A. G. Andreou, J. Kitching, S. Knappe, S. J. Lehtonen, S. M. London, and M. Kafel, J. Geophys. Res. Space Phys. 121, 7870 (2016).ADSCrossRefGoogle Scholar
  7. 7.
    T. G. Walker and M. S. Larsen, Advances in Atomic, Molecular, and Optical Ohysics, Ed. by E. Arimondo, C. C. Lin, and S. F. Yelin (Academic, New York, 2016), Vol. 65, p. 373.Google Scholar
  8. 8.
    A. K. Vershovskii, Yu. A. Litmanovich, A. S. Pazgalev, and V. G. Peshekhonov, Girosk. Navig. 26 (1), 55 (2018).CrossRefGoogle Scholar
  9. 9.
    N. D. Bhaskar, J. Camparo, W. Happer, and A. Sharma, Phys. Rev. A 23, 3048 (1981).ADSCrossRefGoogle Scholar
  10. 10.
    I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, Nature (London, U.K.) 422 (6932), 596 (2003).ADSCrossRefGoogle Scholar
  11. 11.
    M. P. Ledbetter, I. M. Savukov, V. M. Acosta, D. Budker, and M. V. Romalis, Phys. Rev. A 77, 033408 (2008).ADSCrossRefGoogle Scholar
  12. 12.
    E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Munoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes, Nature (London, U.K.) 555, 657 (2018).ADSCrossRefGoogle Scholar
  13. 13.
    W. E. Bell and A. L. Bloom, Phys. Rev. 107, 1559 (1957).ADSCrossRefGoogle Scholar
  14. 14.
    L. L. Smith and P. M. Koch, J. Opt. Soc. Am. A 13, 2102 (1996).ADSCrossRefGoogle Scholar
  15. 15.
    E. J. Galvez and P. M. Koch, J. Opt. Soc. Am. A 14, 3410 (1997).ADSCrossRefGoogle Scholar
  16. 16.
    A. K. Vershovskii and A. S. Pazgalev, Tech. Phys. 53, 646 (2008).CrossRefGoogle Scholar
  17. 17.
    W. H. McMaster, Am. J. Phys. 22, 351 (1954).ADSCrossRefGoogle Scholar
  18. 18.
    W. H. McMaster, Rev. Mod. Phys. 33, 8 (1961).ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge Univ. Press, Cambridge, 1999), p. 621.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. K. Vershovskii
    • 1
    Email author
  • S. P. Dmitriev
    • 1
  • A. S. Pazgalev
    • 1
  • M. V. Petrenko
    • 1
  1. 1.Ioffe Physical Technical Institute, Russian Academy of SciencesSt. PetersburgRussia

Personalised recommendations