Skip to main content
Log in

Morphology Control and Optical Properties of CdSe Nanorods by Surface Ligands

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

In this paper, CdSe nanorods were prepared via solvothermal synthesis, the effect of surface ligands on the morphology of nanorods was investigated under the premise by tuning the percentage of surface ligands in the precursors. Experimental results show that the absorption and emission spectrum of CdSe nanorod with different aspect ratio varying from 4:1 to 2:1 have a red-shift, and the aspect ratio gradually decreases as the percentage of tetradecylphosphoric acid (TDPA) in the precursor increases. In addition, the CdSe optical stability improves as the percentage of TDPA increases. It is also shown that the crystal surface, which is not covered by TDPA, has an increased surface energy, which results in rapid growth of the crystal face and the formation of a rod-like structure. As a result, the effects of anisotropic absorption and emission, along the long axis properties can find many applications in the fields of optics, optical materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. S. Vezzoli, M. Manceau, G. Leménager, Q. Glorieux, E. Giacobino, L. Carbone, M. de Vittorio, and A. Bramati, ACS Nano 9, 7992 (2015).

    Article  Google Scholar 

  2. J. S. Kamal, R. Gomes, Z. Hens, M. Karvar, K. Neyts, S. Compernolle, and F. Vanhaecke, Phys. Rev. B 85, 035126 (2012).

    Article  ADS  Google Scholar 

  3. A. Sitt, A. Salant, G. Menagen, and U. Banin, Nano Lett. 11, 2054 (2011).

    Article  ADS  Google Scholar 

  4. A. Burger, I. Shilo, and M. Schieber, IEEE Trans. Nucl. Sci. 30, 368 (2007).

    Article  ADS  Google Scholar 

  5. D. M. Kroupa, M. Vörös, N. P. Brawand, B. W. McNichols, E. M. Miller, Jing Gu, A. J. Nozik, A. Sellinger, G. Galli, and M. C. Beard, Nat. Commun. 8, 15257 (2017).

    Article  ADS  Google Scholar 

  6. J. K. Jaiswal, H. Mattoussi, J. M. Mauro, and S. M. Simon, Nat. Biotechnol. 21, 47 (2003).

    Article  Google Scholar 

  7. Jier Huang, Zhuangqun Huang, Ye Yang, Haiming Zhu, and Tianquan Lian, J. Am. Chem. Soc. 132, 4858 (2010).

    Article  Google Scholar 

  8. Z. A. Peng and Xiaogang Peng, J. Am. Chem. Soc. 124, 3343 (2002).

    Article  Google Scholar 

  9. C. Bullen and P. Mulvaney, Langmuir 22, 3007 (2006).

    Article  Google Scholar 

  10. E. M. Wong, P. G. Hoertz, C. J. Liang, Bai-Ming Shi, G. J. Meyer, and P. C. Searson, Langmuir 17, 8362 (2001).

    Article  Google Scholar 

  11. V. Ball, J.-M. Planeix, O. Félix, J. Hemmerlé, P. Schaaf, M. W. Hosseini, and J. C. Voegel, Cryst. Growth Des. 2, 489 (2002).

    Article  Google Scholar 

  12. L. Manna, E. C. Scher, and A. P. Alivisatos, J. Cluster Sci. 13, 521 (2002).

    Article  Google Scholar 

  13. Yadong Yin and A. P. Alivisatos, Nature (London, U.K.) 437, 664 (2005).

    Article  ADS  Google Scholar 

  14. H. S. Nalwa, Handbook of Low and High Dielectric Constant Materials and Their Applications (Academic, New York, 1999).

    Google Scholar 

  15. Jiangtao Hu, Liang-shi Li, Weidong Yang, L. Manna, Lin-wang Wang, and A. P. Alivisatos, Science (Washington, DC, U. S.) 292, 2060 (2001).

    Article  Google Scholar 

  16. Wei Wang, Sarbajit Banerjee, Shengguo Jia, M. L. Steigerwald, and I. P. Herman, Chem. Mater. 19, 2573 (2007).

    Article  Google Scholar 

  17. L. Carbone, S. Kudera, E. Carlino, W. J. Parak, C. Giannini, R. Cingolani, and L. Manna, J. Am. Chem. Soc. 128, 748 (2006).

    Article  Google Scholar 

  18. E. C. Scher, L. Manna, and A. P. Alivisatos, Phil. Trans. R. Soc. Math. Phys. Eng. Sci. 361, 241 (2003).

    Article  ADS  Google Scholar 

  19. Yadong Yin and A. P. Alivisatos, Nature (London, U.K.) 437, 664 (2005).

    Article  ADS  Google Scholar 

  20. A. P. Alivisatos, Sci. Am. 285, 66 (2001).

    Article  Google Scholar 

  21. D. V. Talapin, A. L. Rogach, A. Kornowski, M. Haase, and H. Weller, Nano Lett. 1, 207 (2001).

    Article  ADS  Google Scholar 

  22. Ling Xu, Xinfan Huang, Jianming Zhu, Hongming Chen, and Kunji Chen, J. Mater. Sci. 35, 1375 (2000).

    Article  ADS  Google Scholar 

Download references

Funding

This work is supported by the “111” Project of China (D17017), the National Natural Science Foundation of China (21703017, 11604024), the Advance Recearch Project of Weapon and Equipment (6140414020102), the Developing Project of Science and Technology of Jilin Province (20180519017JH, 20190701029GH, 20190201181JC), and the Project of Education Department of Jilin Province (JJKH20181101KJ and JJKH20181106KJ). Science Foundation for Young Scientists of Changchun University of science and technology (XQNJJ-2016-14).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinhua Li.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Z., Li, J., Feng, K. et al. Morphology Control and Optical Properties of CdSe Nanorods by Surface Ligands. Tech. Phys. Lett. 45, 814–819 (2019). https://doi.org/10.1134/S1063785019080273

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785019080273

Keywords:

Navigation