Skip to main content
Log in

The Effect of Irradiation with Si+ Ions on Resistive Switching in Memristive Structures Based on Yttria-Stabilized Zirconia

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

We have studied the resistive switching in memristive structures based on 40-nm-thick yttria-stabilized zirconia (YSZ) films exposed to 6-keV Si+ ion irradiation to a total dose of 5.4 × 1015 cm–2. It is established that the ion irradiation leads to increased stability of the parameters of resistive switching in YSZ based memristive structures. This effect is related to the fact that the diameter of conducting filaments in irradiated structures is limited by lateral dimensions of the region of atomic displacement cascades (i.e., the region occupied by point defects produced by bombarding ions). The oxidation of ion-modified filaments during resistive switching proceeds more effectively and leads to increasing resistance in the high-resistance state of memristive structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. A. Marchewka, B. Roesgen, K. Skaja, H. Du, C. L. Jia, J. Mayer, V. Rana, R. Waser, and S. Menzel, Adv. Electron. Mater. 2, 1500233 (2016). https://doi.org/10.1002/aelm.201500233

    Article  Google Scholar 

  2. Yu. Matveyev, K. Egorov, A. Markeev, and A. Zenkevich, J. Appl. Phys. 117, 044901 (2015). https://doi.org/10.1063/1.4905792

    Article  ADS  Google Scholar 

  3. A. Mehonic, A. L. Shluger, D. Gao, I. Valov, E. Miranda, D. Ielmini, A. Bricalli, E. Ambrosi, C. Li, J. J. Yang, Q. Xia, and A. J. Kenyon, Adv. Mater. 30, 1801187 (2018). https://doi.org/10.1002/adma.201801187

    Article  Google Scholar 

  4. W. Yi, S. E. Savel’ev, G. Medeiros-Ribeiro, F. Miao, M. X. Zhang, J. J. Yang, A. M. Bratkovsky, and R. S. Williams, Nat. Commun. 7, 11142 (2016). https://doi.org/10.1038/ncomms11142

    Article  ADS  Google Scholar 

  5. P. Parreira, G. W. Paterson, S. McVitie, and D. A. MacLaren, J. Phys. D: Appl. Phys. 49, 095111 (2016). https://doi.org/10.1088/0022-3727/49/9/095111

    Article  ADS  Google Scholar 

  6. Y. Sun, C. Song, J. Yin, X. Chen, Q. Wan, F. Zeng, and F. Pan, ACS Appl. Mater. Interfaces. 9, 34064 (2017). https://doi.org/10.1021/acsami.7b09710

    Article  Google Scholar 

  7. M. Trapatseli, S. Cortese, A. Serb, A. Khiat, and T. Prodromakis, J. Appl. Phys. 121, 184505 (2017). https://doi.org/10.1063/1.4983006

    Article  ADS  Google Scholar 

  8. W. Wu, H. Wu, B. Gao, N. Deng, and H. Qian, J. Appl. Phys. 124, 152108 (2018). https://doi.org/10.1063/1.5037896

    Article  ADS  Google Scholar 

  9. F. Alibart, L. Gao, B. D. Hoskins, and D. B. Strukov, Nanotechnology 23, 075201 (2012). https://doi.org/10.1088/0957-4484/23/7/075201

    Article  ADS  Google Scholar 

  10. A. N. Mikhaylov, E. G. Gryaznov, A. I. Belov, D. S. Korolev, A. N. Sharapov, D. V. Guseinov, D. I. Tetelbaum, S. V. Tikhov, N. V. Malekhonova, A. I. Bobrov, D. A. Pavlov, S. A. Gerasimova, V. B. Kazantsev, N. V. Agudov, A. A. Dubkov, et al., Phys. Status Solidi C. 13, 870 (2016). https://doi.org/10.1002/pssc.201600083

    Article  ADS  Google Scholar 

  11. Y. Gonzalez-Velo, H. J. Barnaby, and M. N. Kozicki, Semicond. Sci. Technol. 32, 083002 (2017). https://doi.org/10.1088/1361-6641/aa6124

    Article  ADS  Google Scholar 

  12. R. Fang, Y. G. Velo, W. Chen, K. E. Holbert, M. N. Kozicki, and H. Barnaby, Appl. Phys. Lett. 104, 183507 (2014). https://doi.org/10.1063/1.4875748

    Article  ADS  Google Scholar 

  13. L. Gao, B. Hoskins, M. Zaynetdinov, V. Kochergin, and D. Strukov, Appl. Phys. A. 120, 1599 (2015). https://doi.org/10.1007/s00339-015-9368-9

    Article  ADS  Google Scholar 

  14. M. Barlas, A. Grossi, L. Grenouillet, E. Vianello, E. Nolot, N. Vaxelaire, P. Blaise, B. Traore, J. Coignus, F. Perrin, R. Crochemore, F. Mazen, L. Lachal, S. Pauliac, C. Pellissier, et al., in Proceedings of the 2017 IEEE International Electron Devices Meeting (San Francisco, USA) (IEEE, 2017), p. 14.6.1. https://doi.org/10.1109/iedm.2017.8268392

  15. H. Xie, M. Wang, P. Kurunczi, Y. Erokhin, Q. Liu, H. Lv, Y. Li, S. Long, S. Liu, and M. Liu, AIP Conf. Proc. 1496, 26 (2012). https://doi.org/10.1063/1.4766481

    Article  ADS  Google Scholar 

  16. D. O. Filatov, V. V. Karzanov, I. N. Antonov, and O. N. Gorshkov, Tech. Phys. Lett. 44, 1160 (2018). https://doi.org/10.21883/PJTF.2018.24.47035.17531

    Article  ADS  Google Scholar 

  17. Y. Y. Chen, R. Roelofs, A. Redolfi, R. Degraeve, D. Crotti, A. Fantini, S. Clima, B. Govoreanu, M. Komura, L. Goux, L. Zhang, A. Belmonte, Q. Xie, J. Maes, G. Pourtois, and M. Jurczak, in Proceedings of the 2014 Symposium on VLSI Technology, Honolulu, USA (IEEE, 2014), p. 1. https://doi.org/10.1109/vlsit.2014.6894403

  18. M. N. Koryazhkina, Cand. Sci. Dissertation (Lobachevskii State Univ., Nizh. Novgorod, 2018).

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 18-37-00456.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Koryazhkina.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by P. Pozdeev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okulich, E.V., Koryazhkina, M.N., Korolev, D.S. et al. The Effect of Irradiation with Si+ Ions on Resistive Switching in Memristive Structures Based on Yttria-Stabilized Zirconia. Tech. Phys. Lett. 45, 690–693 (2019). https://doi.org/10.1134/S1063785019070253

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785019070253

Keywords:

Navigation