Technological Basis of the Formation of Micromesh Transparent Electrodes by Means of a Self-Organized Template and the Study of Their Properties


This Letter presents the results of a study of the physical properties of micromesh transparent electrodes on a flexible substrate, obtained using a template in the form of silica layers subjected to controlled cracking. For the first time, a combined approach to the control of parameters of a micromesh structure (crack width and cell size) by varying the pH and the thickness of the sol layer is proposed. Using this approach, transparent electrodes with a surface resistance of 4.1 Ω/sq with a transparency of 85.7% were obtained. Micromesh electrodes are characterized by linear optical transmission in the visible and IR ranges, which opens up prospects for their use in optoelectronics.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.


  1. 1

    D. S. Hecht, L. B. Hu, and G. Irvin, Adv. Mater. 23, 1482 (2011).

    Article  Google Scholar 

  2. 2

    K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, Nature (London, U.K.) 457 (7230), 706 (2009).

    ADS  Article  Google Scholar 

  3. 3

    J. G. Ok, M. K. Kwak, C. M. Huard, H. S. Youn, and L. J. Guo, Adv. Mater. 25, 6554 (2013).

    Article  Google Scholar 

  4. 4

    M.-G. Kang and L. J. Guo, Adv. Mater. 19, 1391 (2007).

    Article  Google Scholar 

  5. 5

    C. F. Guo and Z. Ren, Mater. Today 18, 143 (2015).

    Article  Google Scholar 

  6. 6

    T. Tokuno, M. Nogi, J. Jiu, T. Sugahara, and K. Suganuma, Langmuir 28, 9298 (2012).

    Article  Google Scholar 

  7. 7

    C. F. Guo, T. Sun, Q. Liu, Z. Suo, and Z. Ren, Nat. Commun. 5, 3121 (2014).

    ADS  Article  Google Scholar 

  8. 8

    T. Gao, B. Wang, B. Ding, J.-K. Lee, and P. W. Leu, Nano Lett. 14, 2105 (2014).

    ADS  Article  Google Scholar 

  9. 9

    S. V. Khartov, M. M. Simunin, A. S. Voronin, D. V. Karpova, A. V. Shiverskii, and Yu. V. Fadeev, RF Patent No. 2574249, Byull. Izobret., No. 14 (2016).

  10. 10

    B. Han, K. Pei, Y. Huang, X. Zhang, Q. Rong, Q. Lin, Y. Guo, T. Sun, C. Guo, D. Carnahan, M. Giersig, Y. Wang, J. Gao, Z. Ren, and K. Kempa, Adv. Mater. 26, 873 (2014).

    Article  Google Scholar 

  11. 11

    R. Gupta, S. Walia, M. Hosel, J. Jensen, D. Angmo, F. C. Krebs, and G. U. Kulkarni, J. Mater. Chem. A 2, 10930 (2014).

    Article  Google Scholar 

  12. 12

    T. A. Yakhno and V. G. Yakhno, Tech. Phys. 54, 1219 (2009).

    Article  Google Scholar 

  13. 13

    N. A. Shabanova and P. D. Sarkisov, Sol-Gel Technology. Nanodispersed Silica (BINOM. Laboratoriya Znanii, Moscow, 2012) [in Russian].

  14. 14

    G. V. Naik, V. M. Shalaev, and A. Boltasseva, Adv. Mater. 25, 3264 (2013).

    Article  Google Scholar 

  15. 15

    A. S. Voronin, F. S. Ivanchenko, M. M. Simunin, A. V. Shiverskiy, A. S. Aleksandrovsky, I. V. Nemtsev, Y. V. Fadeev, D. V. Karpova, and S. V. Khartov, Appl. Surf. Sci. 364, 931 (2016).

    ADS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to A. S. Voronin.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Voronin, A.S., Simunin, M.M., Fadeev, Y.V. et al. Technological Basis of the Formation of Micromesh Transparent Electrodes by Means of a Self-Organized Template and the Study of Their Properties. Tech. Phys. Lett. 45, 366–369 (2019).

Download citation