Advertisement

Technical Physics Letters

, Volume 45, Issue 4, pp 366–369 | Cite as

Technological Basis of the Formation of Micromesh Transparent Electrodes by Means of a Self-Organized Template and the Study of Their Properties

  • A. S. VoroninEmail author
  • M. M. Simunin
  • Yu. V. Fadeev
  • F. S. Ivanchenko
  • D. V. Karpova
  • I. A. Tambasov
  • S. V. Khartov
Article

Abstract

This Letter presents the results of a study of the physical properties of micromesh transparent electrodes on a flexible substrate, obtained using a template in the form of silica layers subjected to controlled cracking. For the first time, a combined approach to the control of parameters of a micromesh structure (crack width and cell size) by varying the pH and the thickness of the sol layer is proposed. Using this approach, transparent electrodes with a surface resistance of 4.1 Ω/sq with a transparency of 85.7% were obtained. Micromesh electrodes are characterized by linear optical transmission in the visible and IR ranges, which opens up prospects for their use in optoelectronics.

Notes

REFERENCES

  1. 1.
    D. S. Hecht, L. B. Hu, and G. Irvin, Adv. Mater. 23, 1482 (2011).CrossRefGoogle Scholar
  2. 2.
    K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, Nature (London, U.K.) 457 (7230), 706 (2009).ADSCrossRefGoogle Scholar
  3. 3.
    J. G. Ok, M. K. Kwak, C. M. Huard, H. S. Youn, and L. J. Guo, Adv. Mater. 25, 6554 (2013).CrossRefGoogle Scholar
  4. 4.
    M.-G. Kang and L. J. Guo, Adv. Mater. 19, 1391 (2007).CrossRefGoogle Scholar
  5. 5.
    C. F. Guo and Z. Ren, Mater. Today 18, 143 (2015).CrossRefGoogle Scholar
  6. 6.
    T. Tokuno, M. Nogi, J. Jiu, T. Sugahara, and K. Suganuma, Langmuir 28, 9298 (2012).CrossRefGoogle Scholar
  7. 7.
    C. F. Guo, T. Sun, Q. Liu, Z. Suo, and Z. Ren, Nat. Commun. 5, 3121 (2014).ADSCrossRefGoogle Scholar
  8. 8.
    T. Gao, B. Wang, B. Ding, J.-K. Lee, and P. W. Leu, Nano Lett. 14, 2105 (2014).ADSCrossRefGoogle Scholar
  9. 9.
    S. V. Khartov, M. M. Simunin, A. S. Voronin, D. V. Karpova, A. V. Shiverskii, and Yu. V. Fadeev, RF Patent No. 2574249, Byull. Izobret., No. 14 (2016).Google Scholar
  10. 10.
    B. Han, K. Pei, Y. Huang, X. Zhang, Q. Rong, Q. Lin, Y. Guo, T. Sun, C. Guo, D. Carnahan, M. Giersig, Y. Wang, J. Gao, Z. Ren, and K. Kempa, Adv. Mater. 26, 873 (2014).CrossRefGoogle Scholar
  11. 11.
    R. Gupta, S. Walia, M. Hosel, J. Jensen, D. Angmo, F. C. Krebs, and G. U. Kulkarni, J. Mater. Chem. A 2, 10930 (2014).CrossRefGoogle Scholar
  12. 12.
    T. A. Yakhno and V. G. Yakhno, Tech. Phys. 54, 1219 (2009).CrossRefGoogle Scholar
  13. 13.
    N. A. Shabanova and P. D. Sarkisov, Sol-Gel Technology. Nanodispersed Silica (BINOM. Laboratoriya Znanii, Moscow, 2012) [in Russian].Google Scholar
  14. 14.
    G. V. Naik, V. M. Shalaev, and A. Boltasseva, Adv. Mater. 25, 3264 (2013).CrossRefGoogle Scholar
  15. 15.
    A. S. Voronin, F. S. Ivanchenko, M. M. Simunin, A. V. Shiverskiy, A. S. Aleksandrovsky, I. V. Nemtsev, Y. V. Fadeev, D. V. Karpova, and S. V. Khartov, Appl. Surf. Sci. 364, 931 (2016).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. S. Voronin
    • 1
    Email author
  • M. M. Simunin
    • 1
    • 2
  • Yu. V. Fadeev
    • 1
  • F. S. Ivanchenko
    • 1
    • 2
  • D. V. Karpova
    • 1
  • I. A. Tambasov
    • 3
  • S. V. Khartov
    • 1
  1. 1.Krasnoyarsk Science Center, Siberian Branch, Russian Academy of SciencesKrasnoyarskRussia
  2. 2.Siberian Federal UniversityKrasnoyarskRussia
  3. 3.Kirensky Institute of Physics, Siberian Branch, Russian Academy of SciencesKrasnoyarskRussia

Personalised recommendations