Skip to main content
Log in

The Effect of Nanofluids on the Heat-Transfer Capacity of Miniature Thermosyphons for Electronics Cooling

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

Stable nanofluids based on DG-100 grade carbon black and carbon nanotubes have been prepared, and their influence on the maximum heat-transfer capacity and thermal resistance of closed-loop two-phase thermosyphons (TPTs) intended for electronics cooling have been studied. A more than twofold increase in the critical heat flux of these TPTs as compared to those filled with water has been obtained along with a sharp decrease in their thermal resistance. It is suggested that this effect is not only due to the high thermal conductivity of the proposed nanofluids, but is also related to the formation of a specific porous structure hindering the appearance of a vapor film and enhancing the boiling process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. L. S. Pioro and I. L. Pioro, Industrial Two-Phase Thermosyphons (Nauk. Dumka, Kiev, 1988; Begell House, New York, 1997).

  2. M. K. Bezrodnyi, I. L. Pioro, and T. O. Kostyuk, Transfer Processes in Two-Phase Thermosiphon Systems. Theory and Practice (Fakt, Kiev, 2005) [in Russian].

  3. V. Yu. Kravets, E. N. Pis’mennyi, and V. I. Kon’shin, Zbir. Nauk. Prats SNUYaE, No. 4 (32), 39 (2009).

    Google Scholar 

  4. S. K. Das, S. U. S. Choi, W. Yu, and T. Pradeep, Nanofluids: Science and Technology (Wiley-Interscience, New York, 2007).

    Book  Google Scholar 

  5. H. Kim, Nanoscale Res. Lett. 6, 415 (2011).

    Article  ADS  Google Scholar 

  6. B. I. Bondarenko, V. N. Moraru, S. V. Sidorenko, D. V. Komysh, and A. I. Khovavko, Tech. Phys. Lett. 38, 856 (2012).

    Article  ADS  Google Scholar 

  7. B. I. Bondarenko, V. N. Moraru, S. V. Sidorenko, and D. V. Komysh, Tech. Phys. Lett. 42, 677 (2016).

    Article  ADS  Google Scholar 

  8. T. Paramatthanuwat, S. Boothaisong, S. Rittidech, and K. Booddachan, Heat Mass Transfer 46, 281 (2010).

    Article  ADS  Google Scholar 

  9. Q. Baojin, Z. Li, X. Hong, and S. Yan, Energy Convers. Manag. 50, 2174 (2009).

    Article  Google Scholar 

  10. H. Imura, H. Kusada, J. Oyata, T. Miyazaki, and N. Sakamoto, Trans. Jpn. Soc. Mech. Eng. 22, 485 (1977).

    Google Scholar 

  11. A. Kamyar, K. S. Ong, and R. Saidur, Int. J. Heat Mass Transfer 65, 610 (2013).

    Article  Google Scholar 

  12. K. Sarathi Shankar, B. Suresh Kumar, A. Nandhakumar, and C. Narendhar, Int. J. ChemTech Res. 9, 239 (2016).

    Google Scholar 

  13. V. P. Isachenko, V. A. Osipova, and A. S. Sukomel, Heat Transfer (Energiya, Moscow, 1965) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Moraru.

Additional information

Translated by P. Pozdeev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bondarenko, B.I., Moraru, V.N., Kravets, V.Y. et al. The Effect of Nanofluids on the Heat-Transfer Capacity of Miniature Thermosyphons for Electronics Cooling. Tech. Phys. Lett. 45, 299–303 (2019). https://doi.org/10.1134/S1063785019030234

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785019030234

Navigation