Skip to main content
Log in

Noninvasive Measurement of Bioelectric Potentials of Plants

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

A system for the noninvasive measurement of bioelectric potentials in the soil–plant system, which is based on a new—and harmless to plants—method ensuring the surface contact of the root system with electrodes, is developed and tested with the use of the Chlorophytum comosum perennial grassy plant. It is shown that the irrigation of the plant from the top after exposure to water-scarce conditions causes a jump in the bioelectric potential at the level of 200–250 mV for about 300 s with subsequent reaching of a plateau corresponding to the physiological state of the plant. At the same time, the diffusion of water from below leads to a smooth change in the bioelectric potential upon reaching the same level. It is shown that invasive insertion of an electrode leads to nonmonotonic and descending time dependences of the bioelectric potential, which are probably a response of the living system to damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. R. A. Kolovskii, Bioelectric Potentials of Woody Plants (Nauka, Novosibirsk, 1980) [in Russian].

    Google Scholar 

  2. A. I. Pozdnyakov, Pochvovedenie, No. 7, 813 (2013).

  3. T. A. Tattar and R. O. Blanchard, Ann. Rev. Phytopathol. 14, 309 (1976).

    Article  Google Scholar 

  4. E. D. Brenner, R. Stahlberg, S. Mancuso, J. Vivanco, F. Baluska, and E. van Volkenburgh, Trends Plant Sci. 11, 413 (2006).

    Article  Google Scholar 

  5. M. A. Kutimskaya, M. Yu. Buzunova, and L. V. Ubryatova, Vestn. IrGSKhA, No. 60, 105 (2014).

    Google Scholar 

  6. Y. Hasegawa, R. Hoshino, and H. Uchida, in Proceedings of NOLTA 2015 Conference, Hong Kong, China, December 1–4, 2015, p. 860.

  7. K. J. Parkinson, Doctoral Thesis (Durham Univ., 1963).

  8. L. Karlsson, Rev. Sci. Instrum. 43, 458 (1972).

    Article  ADS  Google Scholar 

  9. J. Fromm and S. Lautner, Plant, Cell Environ. 30, 249 (2007).

    Article  Google Scholar 

  10. T. Ochiai, S. Tago, M. Hayashi, and A. Fujishima, ECS Trans. 75, 233 (2016).

    Article  Google Scholar 

  11. S. E. B. Tyler, Front. Physiol. 8, 627 (2017).

    Article  Google Scholar 

  12. D. P. Strik, H. V. M. Hamelers, J. F. Snel, and C. J. Buisman, Int. J. Energy Res. 32, 870 (2008).

    Article  Google Scholar 

  13. M. A. Moqsud, J. Yoshitake, Q. S. Bushra, M. Hyodo, K. Omine, and D. Strik, Waste Manage. 36, 63 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. E. Kuleshova.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuleshova, T.E., Bushlyakova, A.V. & Gall’, N.R. Noninvasive Measurement of Bioelectric Potentials of Plants. Tech. Phys. Lett. 45, 190–192 (2019). https://doi.org/10.1134/S1063785019030106

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785019030106

Navigation