A Vacuum-Free Method for Producing Cubic Titanium Carbide in the Plasma of Low-Voltage Direct-Current Arc Discharge


The results of a study on the production of cubic titanium carbide in direct-current arc discharge plasma initiated in open air are presented. A feature of the method is its implementation without the use of gas or liquid protective media preventing the oxidation of products and initial reagents with air oxygen. According to the X-ray diffraction data, graphite gC, hexagonal titanium α-Ti, and cubic titanium carbide TiC are identified in the composition of the powder product. The TiC particles are represented by objects with a regular characteristic cut and sizes from units to tens of micrometers.

This is a preview of subscription content, log in to check access.


  1. 1.

    S. A. Rasaki, B. Zhang, K. Anbalgam, T. Thomas, and M. Yang, Prog. Solid State Chem. 50, 1 (2018). https://doi.org/10.1016/j.progsolidstchem.2018.05.001

    Article  Google Scholar 

  2. 2.

    D. Cho, J. H. Park, Y. Jeong, and Y. L. Joo, Ceram. Int. 41, 10974 (2015). https://doi.org/10.1016/j.ceramint.2015.05.041

    Article  Google Scholar 

  3. 3.

    Q. Dong, M. Huang, C. Guo, G. Yu, and M. Wu, Int. J. Hydrogen Energy 42, 3206 (2017). https://doi.org/10.1016/j.ijhydene.2016.09.217

    Article  Google Scholar 

  4. 4.

    M. Ghidiu, M. R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, and M. W. Barsoum, Nature (London, U.K.) 516, 78 (2014). doi 10.1038/nature13970

    ADS  Google Scholar 

  5. 5.

    S.-Y. Lin and X. Zhang, J. Power Sources 294, 354 (2015). https://doi.org/10.1016/j.jpowsour.2015.06.082

    ADS  Article  Google Scholar 

  6. 6.

    A. de Bonis, A. Santagata, A. Galasso, A. Laurita, and R. Teghil, J. Colloid Interface Sci. 489, 76 (2017). https://doi.org/10.1016/j.jcis.2016.08.078

    ADS  Article  Google Scholar 

  7. 7.

    J. Yu, H. Yu, J. Gao, L. Zhou, A. Ding, X. Gao, H. Huang, S. Gao, A. Shah, X. Dong, and X. Quan, J. Alloys Compd. 693, 500 (2017). https://doi.org/10.1016/j.jallcom.2016.09.232

    Article  Google Scholar 

  8. 8.

    Y. Su, H. Wei, T. Li, H. Geng, and Y. Zhang, Mater. Res. Bull. 50, 23 (2014). https://doi.org/10.1016/j.materresbull.2013.10.013

    Article  Google Scholar 

  9. 9.

    A. Ya. Pak and G. Ya. Mamontov, Tech. Phys. Lett. 44, 615 (2018). doi 10.21883/PPJTF.2018.14.46341.17056

    ADS  Article  Google Scholar 

  10. 10.

    N. Arora and N. N. Sharma, Diamond Relat. Mater. 50, 135 (2014). https://doi.org/10.1016/j.diamond.2014.10.001

    ADS  Article  Google Scholar 

  11. 11.

    B. Predel, in Landolt–Börnstein. Numerical Data and Functional Relationships in Science and Technology (Springer, Berlin, Heidelberg, 1992), Group IV, Physical Chemistry. Vol. 5b, p. 1. https://doi.org/10.1007/10040476_67110.1007/10040476_671

    Google Scholar 

  12. 12.

    K. Frisk, Comput. Coupling Phase Diagrams Thermochem. 27, 367 (2003). doi 10.1016/j.calphad.2004.01.004

    Article  Google Scholar 

  13. 13.

    A. A. Rempel, Russ. Chem. Rev. 76, 435 (2007). https://doi.org/10.1070/RC2007v076n05ABEH003674

    ADS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to A. Ya. Pak.

Additional information

Original Russian Text © A.Ya. Pak, 2019, published in Pis’ma v Zhurnal Tekhnicheskoi Fiziki, 2019, Vol. 45, No. 1, pp. 5–7.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pak, A.Y. A Vacuum-Free Method for Producing Cubic Titanium Carbide in the Plasma of Low-Voltage Direct-Current Arc Discharge. Tech. Phys. Lett. 44, 1192–1194 (2018). https://doi.org/10.1134/S1063785019010152

Download citation