Skip to main content
Log in

Substructural-Phase Transformations during Heat Treatments of the Ti–50.9 at % Ni Nanocrystalline Alloy

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

The method of transmission electron microscopy is used to study the grain-subgrain structure of the Ti–50.9 at % Ni nanocrystalline alloy after heat treatments at 300–500°C. It is found that the decomposition of the B2 solid solution of TiNi by the heterogeneous mechanism occurs in the subgrain structure, while the Ti3Ni4 particles are not observed in nanograins. The features of the recovery and recrystallization of the alloy and their relationship with the processes of dissolution and precipitation of Ti3Ni4 particles are revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shape Memory Alloys for Biomedical Application, Ed. by T. Yoneyama and S. Miyazaki (Elsevier, Amsterdam, 2008).

  2. M. Barney, D. Xub, S. Robertson, V. Schroeder, R. Ritchie, A. Pelton, and A. Mehta, J. Mech. Behav. Biomed. Mater. 4, 1431 (2011).

    Article  Google Scholar 

  3. M. Elahinia, M. Hashemi, M. Tabesh, and S. Bhaduri, Prog. Mater. Sci. 57, 911 (2012).

    Article  Google Scholar 

  4. R. Valiev, D. Gunderov, E. Prokofiev, V. Pushin, and Y. Zhu, Mater. Trans. 49, 97 (2008).

    Article  Google Scholar 

  5. X. B. Shi, F. M. Guo, J. S. Zhang, H. L. Ding, and L. S. Cui, J. Alloys Compd. 688, 62 (2016).

    Article  Google Scholar 

  6. E. A. Prokofiev, A. Burow, E. Payton, R. Zarnetta, J. Frenzel, D. Gunderov, R. Valiev, and G. Eggeler, Adv. Eng. Mater. 12, 747 (2010).

    Article  Google Scholar 

  7. Y. X. Tong, K. P. Hu, F. Chen, B. Tian, L. Li, and Y. F. Zheng, Intermetallics 85, 163 (2017).

    Article  Google Scholar 

  8. B. Sun, M. Fu, J. Lin, and Y. Ning, Mater. Des. 131, 49 (2017).

    Article  Google Scholar 

  9. S. Prokoshkin, V. Brailovski, S. Dubinskiy, K. Inaekyan, and A. Kreitcberg, Shape Memory Superelast. 2, 12 (2016).

    Article  Google Scholar 

  10. J. Khalil-Allafi, A. Dlouhý, and G. Eggeler, Acta Mater. 50, 4255 (2002).

    Article  Google Scholar 

  11. E. V. Kozlov, N. A. Koneva, and N. A. Popova, Phys. Mesomech. 12, 280 (2009).

    Article  Google Scholar 

  12. D. A. Porter and K. E. Easterling, Phase Transformations in Metals and Alloys (Chapman and Hall, London, 1997).

    Google Scholar 

  13. F. G. Humphreys and M. Hatherly, Recrystallization and Related Phenomena (Elsevier, Oxford, 2004).

    Google Scholar 

  14. P. Chowdhury and H. Sehitoglu, Prog. Mater. Sci. 85, 1 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. M. Poletika.

Additional information

Original Russian Text © T.M. Poletika, S.L. Girsova, A.I. Lotkov, K.V. Krukovskii, 2018, published in Pis’ma v Zhurnal Tekhnicheskoi Fiziki, 2018, Vol. 44, No. 24, pp. 3–10.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poletika, T.M., Girsova, S.L., Lotkov, A.I. et al. Substructural-Phase Transformations during Heat Treatments of the Ti–50.9 at % Ni Nanocrystalline Alloy. Tech. Phys. Lett. 44, 1120–1123 (2018). https://doi.org/10.1134/S1063785018120520

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785018120520

Navigation