Skip to main content
Log in

The Development of Overheat Instabilities in a Metastable Metal

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

The development of thermal (overheat) instabilities during the electric explosion of a conducting wire has been analyzed using the theory of small perturbations. At the initial stage of electric explosion (upon melting of the metal), the substance can occur in three phases: liquid, two-phase state (liquid + vapor), and metastable metal liquid (overheated liquid). Comparative analysis of the growth of overheat instabilities is performed as dependent on the phase in which the metal can occur. It is shown that, from the standpoint of development of overheat instability, the most unstable phase is the overheated metastable liquid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Burtsev, N. V. Kalinin, and A. V. Luchinskii, Electric Explosion of Conductors and Its Application in Electrophysical Devices (Energoizdat, Moscow, 1990) [in Russian].

    Google Scholar 

  2. G. A. Mesyats, Pulsed Energetics and Electronics (Nauka, Moscow, 2004) [in Russian].

    Google Scholar 

  3. M. I. Lerner, E. A. Glazkova, A. S. Lozhkomoev, N. V. Svarovskaya, O. V. Bakina, A. V. Pervikov, and S. G. Psakhie, Powder Technol. 295, 307 (2016).

    Article  Google Scholar 

  4. S. I. Krivosheev, V. V. Titkov, and G. A. Shneerson, Tech. Phys. 42, 352 (1997).

    Article  Google Scholar 

  5. A. L. Surkaev, Tech. Phys. 60, 981 (2015).

    Article  Google Scholar 

  6. T. J. Awe, K. J. Peterson, E. P. Yu, R. D. McBride, D. B. Sinars, M. R. Gomez, C. A. Jennings, M. R. Martin, S. E. Rosenthal, D. G. Schroen, A. B. Sefkow, S. A. Slutz, K. Tomlinson, and R. A. Vesey, Phys. Rev. Lett. 116, 065001 (2016).

    Article  ADS  Google Scholar 

  7. V. V. Aleksandrov, V. A. Gasilov, E. V. Grabovskii, A. N. Gritsuk, Ya. N. Laukhin, K. N. Mitrofanov, G. M. Oleinik, O. G. Ol’khovskaya, P. V. Sasorov, V. P. Smirnov, I. N. Frolov, and A. P. Shevel’ko, Plasma Phys. Rep. 40, 939 (2014).

    Article  ADS  Google Scholar 

  8. Exploding Wires, Ed. by W. G. Chace and H. K. Moor (Plenum, New York, 1959–1968), Vols. 1–4.

    Google Scholar 

  9. V. I. Oreshkin, A. S. Zhigalin, A. G. Rousskikh, and V. V. Kuznetsov, J. Eng. Thermophys. 22, 288 (2013).

    Article  Google Scholar 

  10. D. B. Sinars, T. A. Shelkovenko, S. A. Pikuz, V. M. Romanova, K. M. Chandler, J. B. Greenly, D. A. Hammer, and B. R. Kusse, Phys. Plasmas 7, 429 (2000).

    Article  ADS  Google Scholar 

  11. G. S. Sarkisov, K. W. Struve, and D. H. McDaniel, Phys. Plasmas 11, 4573 (2004).

    Article  ADS  Google Scholar 

  12. V. O. Bel’ko and O. A. Emel’yanov, Tech. Phys. Lett. 35, 861 (2009).

    Article  Google Scholar 

  13. E. Kaselouris, V. Dimitriou, I. Fitilis, A. Skoulakis, G. Koundourakis, E. L. Clark, M. Bakarezos, I. K. Nikolos, N. A. Papadogiannis, and M. Tatarakis, Nat. Commun. 8, 1713 (2017).

    Article  ADS  Google Scholar 

  14. R. B. Baksht, A. G. Rousskikh, A. S. Zhigalin, V. I. Oreshkin, and A. P. Artyomov, Phys. Plasmas 22, 103521 (2015).

    Article  ADS  Google Scholar 

  15. T. J. Awe, E. P. Yu, K. C. Yates, W. G. Yelton, B. S. Bauer, T. M. Hutchinson, S. Fuelling, and B. B. Mckenzie, IEEE Trans. Plasma Sci. 45, 584 (2017).

    Article  ADS  Google Scholar 

  16. K. B. Abramova, N. A. Zlatin, and B. P. Peregud, Sov. Phys. JETP 42, 1019 (1975).

    ADS  Google Scholar 

  17. A. A. Valuev, I. Ya. Dikhter, and V. A. Zeigarnik, Zh. Tekh. Fiz. 48, 2088 (1978).

    Google Scholar 

  18. V. I. Oreshkin, Tech. Phys. Lett. 35, 36 (2009).

    Article  ADS  Google Scholar 

  19. A. G. Rousskikh, V. I. Oreshkin, S. A. Chaikovsky, N. A. Labetskaya, A. V. Shishlov, I. I. Beilis, and R. B. Baksht, Phys. Plasmas 15, 102706 (2008).

    Article  ADS  Google Scholar 

  20. V. I. Oreshkin, Phys. Plasmas 15, 092103 (2008).

    Article  ADS  Google Scholar 

  21. V. I. Oreshkin, A. S. Zhigalin, A. G. Russkikh, S. A. Chaikovskii, and R. B. Baksht, Russ. Phys. J. 60, 1400 (2017).

    Article  Google Scholar 

  22. V. E. Fortov, K. V. Khishchenko, P. R. Levashov, and I. V. Lomonosov, Nucl. Instrum. Methods Phys. Res., Sect. A 415, 604 (1998).

    Article  ADS  Google Scholar 

  23. M. P. Desjarlais, Contrib. Plasma Phys. 41, 267 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Oreshkin.

Additional information

Original Russian Text © V.I. Oreshkin, 2018, published in Pis’ma v Zhurnal Tekhnicheskoi Fiziki, 2018, Vol. 44, No. 20, pp. 62–69.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oreshkin, V.I. The Development of Overheat Instabilities in a Metastable Metal. Tech. Phys. Lett. 44, 930–933 (2018). https://doi.org/10.1134/S1063785018100280

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785018100280

Navigation