Skip to main content
Log in

Erosion Characteristics of Copper-Based Composite Electrodes in an Electric Arc of Variable Length with Transverse Gas Blowing

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

We present experimental data on the erosion of electrodes made of copper-based pseudoalloys during contact breaking at current amplitudes up to 150 kA in nitrogen at a pressure of ~2 MPa with transverse gas blowing. The electric-erosion characteristics of copper–iron pseudoalloy CuFe (85/15%) electrodes obtained by laser layer melting, as well as CuFe (70/30%) and CuW (25/75%) pseudoalloy electrodes fabricated by traditional powder technology (sintering of pressed powder compacts) are reported. The specific erosion of electrodes in variable-length arc amounts to ~1 mg/C, which somewhat exceeds the value observed for a fixed-length arc discharge gap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Current Zero Club CZC. https://doi.org/www.currentzeroclub.org.

  2. E. N. Tonkonogov, High-voltage Alternating Current Circuit Breakers (Politekh. Univ., St. Petersburg, 2015) [in Russian].

    Google Scholar 

  3. Kyoto Protocol to the United Nations Framework Convention on Climate Change (1998). https://doi.org/unfccc.int/kyoto_protocol/items/2830.php.

  4. Paris Agreement within the United Nations Framework Convention on Climate Change (2015). https://doi.org/unfccc.int/paris_agreement/items/9485.php.

  5. P. Glaubitz, S. Stangherlin, J. M. Biasse, F. Meyer, M. Dallet, M. Pruefert, R. Kurte, T. Saida, K. Uehara, P. Prieur, H. Ito, E. Kynast, A. Janssen, R. Smeets, and D. Dufournet, Electra, No. 274, 34 (2014).

    Google Scholar 

  6. A. S. Aleksandrov and V. V. Zhukov, Vestn. MEI, No. 2, 58 (2012).

    Google Scholar 

  7. M. Seeger, R. Smeets, J. Yan, H. Ito, M. Claessens, E. Dullni, L. Falkingham, C. M. Franck, F. Gentils, W. Hartmann, Y. Kieffel, S. Jia, G. Jones, J. Mantilla, S. Pawar, et al., Plasma Phys. Technol. 4, 8 (2017). https://doi.org/ppt.fel.cvut.cz/articles/2017/seeger.pdf.

    Google Scholar 

  8. H. Hama, S. Okabe, T. Berg, A. Girodet, K. Juhre, J. Kessler, J. Kindersberger, W. Koltunowicz, J. Lopez-Roldan, S. Neuhold, C. Neumann, R. Pietsch, U. Riechert, and U. Schichler, Electra, No. 273, 56 (2014).

    Google Scholar 

  9. B. G. Watkins, Materials selection and evaluation of CuW particulate composites for extreme electrical contacts, PhD Thesis (Georgia Inst. Technol., 2011).

    Google Scholar 

  10. L. Zhon, X. Wang, Y. Wu, M. Rong, X. Zhang, X. Xiang, Y. Zhao, and S. Liu, in Proceedings of the 3rd International Conference on Electric Power Equipment–Switching Technology ICEPE-ST, Busan, 2015, p. 321. doi 10.1109/ICEPE-ST.2015.7368386

    Google Scholar 

  11. J. Wu, R. Han, W. Ding, and A. Qiu, IEEE Trans. Dielectr. Electric. Insul. 24, 2164 (2017). doi 10.1109/TDEI.2017.006254

    Article  Google Scholar 

  12. Ph. Rutberg, Physics and Technology of High-Current Discharges in Dense Gas Media and Flows (Nova Science, New York, 2009).

  13. T. Bregel, W. Krauss-Vogt, R. Michal, and K. E. Saeger, in Proceedings of the 36th IEEE Holm Conference on Electrical Contacts, and the 15th International Conference on Electrical Contacts (IEEE, 1990), p. 569. doi 10.1109/HOLM.1990.113060

    Google Scholar 

  14. Electrical Contacts Principles and Applications, Ed. by P. G. Slade (CRC, Boca Raton, 2014).

    Google Scholar 

  15. D. I. Subbotin, V. E. Kuznetsov, A. I. Litvyakova, I. A. Cherepkova, A. V. Surov, G. V. Nakonechnyi, and V. A. Spodobin, Tech. Phys. 62, 1639 (2017).

    Article  Google Scholar 

  16. Ph. G. Rutberg, A. A. Safronov, S. D. Popov, A. V. Surov, and Gh. V. Nakonechny, Plasma Phys. Control. Fusion 47, 1681 (2005). doi 10.1088/0741-3335/47/10/006

    Article  ADS  Google Scholar 

  17. A. V. Budin, M. E. Pinchuk, V. E. Kuznetsov, and F. G. Rutberg, Tech. Phys. Lett. 40, 1061 (2014).

    Article  ADS  Google Scholar 

  18. V. B. Kovshechnikov, N. I. Litvinov, G. V. Nakonechnyi, R. V. Ovchinnikov, and A. V. Surov, Russ. J. Non-Ferr. Met. 46, 36 (2005).

    Google Scholar 

  19. K. K. Zabello, I. N. Poluyanova, V. V. Yakovlev, and S. M. Shkol’nik, Tech. Phys. Lett. 43, 1005 (2017).

    Article  ADS  Google Scholar 

  20. A. V. Budin, M. E. Pinchuk, and A. G. Leks, Plasma Phys. Technol. 4, 120 (2017). doi 10.14311/ppt.2017.2.120. https://doi.org/ppt.fel.cvut.cz/articles/2017/budin.pdf.

    Article  Google Scholar 

  21. A. V. Budin, M. E. Pinchuk, V. E. Kuznetsov, V. V. Leont’ev, and N. K. Kurakina, Instrum. Exp. Tech. 60, 837 (2017). doi 10.7868/S0032816217060039

    Article  Google Scholar 

  22. W. R. Wilson, IEEE Trans. Power Apparat. Syst., Pt. III 74, 657 (1955). doi 10.1109/AIEEPAS. 1955.4499130

    Google Scholar 

  23. G. V. Butkevich, G. S. Belkin, N. A. Vedeshenkov, and M. A. Zhavoronkov, Electric Erosion of High Current Contacts and Electrodes (Energiya, Moscow, 1978) [in Russian].

    Google Scholar 

  24. A. Donaldson, M. O. Hagler, M. Kristiansen, G. Jackson, and L. Hatfield, IEEE Transact. Plasma Sci. 12, 28 (1984). doi 10.1109/TPS.1984.4316289

    Article  ADS  Google Scholar 

  25. S. V. Bobashev, B. G. Zhukov, R. O. Kurakin, S. A. Ponyaev, and B. I. Reznikov, Tech. Phys. Lett. 41, 964 (2015).

    Article  ADS  Google Scholar 

  26. A. A. Bogomaz, A. V. Budin, V. A. Kolikov, M. E. Pinchuk, A. A. Pozubenkov, and F. G. Rutberg, Dokl. Phys. 48, 1 (2003). doi 10.1134/1.1545364

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Pinchuk.

Additional information

Original Russian Text © A.V. Budin, M.E. Pinchuk, N.K. Kurakina, 2018, published in Pis’ma v Zhurnal Tekhnicheskoi Fiziki, 2018, Vol. 44, No. 18, pp. 3–9.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Budin, A.V., Pinchuk, M.E. & Kurakina, N.K. Erosion Characteristics of Copper-Based Composite Electrodes in an Electric Arc of Variable Length with Transverse Gas Blowing. Tech. Phys. Lett. 44, 808–810 (2018). https://doi.org/10.1134/S1063785018090171

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785018090171

Navigation