Skip to main content
Log in

Modeling Resonances of Dielectric Spheres in the Terahertz Range

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

We have studied the resonance properties of dielectric spheres with subwavelength dimensions in the optical and terahertz frequency range. Distribution of the electric field vector in a sphere irradiated by a plane polarized wave has been numerically simulated using the finite element method. The obtained results clearly demonstrate that it is in principle possible to use resonances of various orders in dielectric spheres for the amplification of current in a conducting antenna with dimensions several times smaller than the radiation wavelength. In the case of resonances within short spectral intervals, it is possible to provide a current density gain up to 25–30 dB as compared to that in the absence of a dielectric sphere surrounding the antenna.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Komiyama, IEEE J. Sel. Top. Quant. Electron. 17, 54 (2011).

    Article  ADS  Google Scholar 

  2. W. Knap, S. Rumyantsev, M. S. Vitiello, D. Coquillat, S. Blin, N. Dyakonova, and T. Nagatsuma, Nanotecnology 24, 214002 (2013).

    Article  ADS  Google Scholar 

  3. V. L. Vaks, E. G. Domracheva, A. A. Lastovkin, S. I. Pripolzin, E. A. Sobakinskaya, M. B. Chernyaeva, and V. A. Anfert’ev, Vestn. Nizhegor. Univ. im. N.I. Lobachevskogo, No. 6 (1), 81 (2013).

    Google Scholar 

  4. I. V. Tret’yakov, N. S. Kaurova, B. M. Voronov, V.A. Anfert’ev, L. S. Revin, V. L. Vaks, and G. N. Gol’tsman, Tech. Phys. Lett. 42, 563 (2016).

    Article  ADS  Google Scholar 

  5. M. V. Lyatti, D. A. Tkachev, and Yu. Ya. Divin, Tech. Phys. Lett. 32, 860 (2006).

    Article  ADS  Google Scholar 

  6. R. Wen, H. Sun, T. Teng, L. Li, and X. Sun, J. Semicond. 33, 104001 (2012).

    Article  Google Scholar 

  7. Z. Y. Liu, L. Y. Liu, J. Yang, and N. J. Wu, IEEE Trans. Terahertz Sci. Technol. 7, 455 (2017). doi 10.1109/TTHZ.2017.2692040

    Article  ADS  Google Scholar 

  8. A. E. Krasnok, D. S. Filonov, C. R. Simovski, Y. S. Kivshar, and P. A. Belov, Appl. Phys. Lett. 104, 133502 (2014). doi 10.1063/1.4869817

    Article  ADS  Google Scholar 

  9. Y. Kivshar and A. Miroshnichenko, Opt. Photon. News 28, 24 (2017).

    Article  ADS  Google Scholar 

  10. B. Ung, A. Dupuis, K. Stoeffler, C. Dubois, and M. Skorobogatiy, J. Opt. Soc. Am. B 28, 917 (2011).

    Article  ADS  Google Scholar 

  11. T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlidal, A. Szeghalmi, E.-B. Kley, and A. Tünnermann, Adv. Opt. Mater. 4, 1780 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Storozhenko.

Additional information

Original Russian Text © D.V. Storozhenko, V.P. Dzyuba, Yu.N. Kul’chin, 2018, published in Pis’ma v Zhurnal Tekhnicheskoi Fiziki, 2018, Vol. 44, No. 16, pp. 75–82.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Storozhenko, D.V., Dzyuba, V.P. & Kul’chin, Y.N. Modeling Resonances of Dielectric Spheres in the Terahertz Range. Tech. Phys. Lett. 44, 739–742 (2018). https://doi.org/10.1134/S1063785018080291

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785018080291

Navigation