Technical Physics Letters

, Volume 44, Issue 2, pp 126–129 | Cite as

Novel Types of Dye-Sensitized and Perovskite-Based Tandem Solar Cells with a Common Counter Electrode

  • M. F. Vildanova
  • A. B. Nikolskaia
  • S. S. Kozlov
  • O. I. Shevaleevskiy
  • L. L. Larina
Article
  • 8 Downloads

Abstract

Novel types of tandem solar cells (TSC) based on dye-sensitized (DSC) and perovskite (PSC) solar cells including DSC/DSC and DSC/PSC configurations with a common counter electrode were fabricated and investigated. The measurements of PV parameters for tandem solar cells under AM1.5 light intensity conditions have shown that the highest power conversion efficiency (PCE) of 14.5% was obtained for the DSC/DSC tandem configuration. At the same time, investigations of DSC/PSC tandem solar cells demonstrated the prospective benefits of this tandem system for obtaining high PCE values.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Law, L. E. Green, J. C. Johnson, R. Saykally, and P. Yang, Nat. Mater. 4, 455 (2005).ADSCrossRefGoogle Scholar
  2. 2.
    M. Kaltenbrunner, M. S. White, E. D. Glowacki, T. Sekitani, T. Someya, N. S. Sariciftci, and S. Bauer, Nat. Commun 3, 770 (2012).ADSCrossRefGoogle Scholar
  3. 3.
    V. D. Dao, L. L. Larina, and H. S. Choi, J. Electrochem. Soc. 161, H896 (2014).CrossRefGoogle Scholar
  4. 4.
    B. O’Regan and M. Grätzel, Nature 353 (6346), 737 (1991).CrossRefGoogle Scholar
  5. 5.
    S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B. F. E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M. K. Nazeeruddin, and M. Grätzel, Nat. Chem. 6, 242 (2014).CrossRefGoogle Scholar
  6. 6.
    H. Sai, T. Matsui, T. Koida, K. Matsubara, M. Kondo, S. Sugiyama, H. Katayama, Y. Takeuchi, and I. Yoshida, Appl. Phys. Lett. 106, 213902 (2015).ADSCrossRefGoogle Scholar
  7. 7.
    S. K. Balasingam, M. Lee, M. G. Kang, and Y. Jun, Chem. Commun. 49, 1471 (2013).CrossRefGoogle Scholar
  8. 8.
    H. Ozawa, R. Shimizu, and H. Arakawa, RSC Adv. 2, 3198 (2012).CrossRefGoogle Scholar
  9. 9.
    O. Chevaleevski, L. Larina, and K. S. Lim, in Proc. of the 3rd World Conference on Photovoltaic Energy Conversion, Osaka, Japan, 2003, Vol. 1, p.23.Google Scholar
  10. 10.
    M. Dürr, A. Bamedi, A. Yasuda, and G. Nelles, Appl. Phys. Lett. 84, 3397 (2004).ADSCrossRefGoogle Scholar
  11. 11.
    A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009).CrossRefGoogle Scholar
  12. 12.
    N. Tsvetkov, L. Larina, O. Shevaleevskiy, E. A. Al-Ammar, and B. T. Ahn, Prog. Photovoltaic Res. Appl. 20, 904 (2012).CrossRefGoogle Scholar
  13. 13.
    M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, Science 338 (6107), 643 (2012).ADSCrossRefGoogle Scholar
  14. 14.
    S. Ito, P. Shen, P. Comte, M. K. Nazeeruddin, P. Liska, P. Péchy, and M. Grätzel, Prog. Photovoltaics Res. Appl. 15, 603 (2007).CrossRefGoogle Scholar
  15. 15.
    J. H. Im, C. R. Lee, J. W. Lee, S. W. Park, and N. G. Park, Nanoscale 3, 4088 (2011).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • M. F. Vildanova
    • 1
  • A. B. Nikolskaia
    • 1
  • S. S. Kozlov
    • 1
  • O. I. Shevaleevskiy
    • 1
  • L. L. Larina
    • 1
  1. 1.Emanuel Institute of Biochemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations