Technical Physics Letters

, Volume 44, Issue 2, pp 98–101 | Cite as

Specific Features of the Microstructure and Properties of Multielement Nitride Coatings Based on TiZrNbAlYCr

  • A. D. Pogrebnjak
  • V. M. Beresnev
  • O. V. Bondar
  • Ya. O. Kravchenko
  • B. Zhollybekov
  • A. I. Kupchishin


Multicomponent nanostructured coatings based on (TiZrNbAlYCr)N with a hardness as high as 47 GPa were obtained by cathodic arc deposition. The effect of partial nitrogen pressure PN (with constant bias potential U b =–200 V applied to the substrate) on the phase-composition variation, the size of crystallites, and their relation to the microstructure and hardness was investigated. An increase in the nitrogen pressure resulted in the formation of two phases with characteristic BCC (the lattice period is 0.342 nm) and FCC lattices with averaged nanocrystallite sizes of 15 and 2 nm. At a high pressure of 0.5 Pa, crystallites in the FCC phase with a lattice period of 0.437 nm grew in size to ~7 nm. The hardness of deposited coatings with larger (3.5 nm) FCC-phase crystallites and smaller (7 nm) BCC-phase crystallites was enhanced considerably.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. D. Pogrebnjak, A. A. Bagdasaryan, I. V. Yakushchenko, and V. M. Beresnev, Russ. Chem. Rev. 83, 1027 (2014).ADSCrossRefGoogle Scholar
  2. 2.
    D. B. Miracle and O. N. Senkov, Acta Mater. 122, 448 (2017).CrossRefGoogle Scholar
  3. 3.
    A. D. Pogrebnjak, I. V. Yakushchenko, O. B. Bondar, V. M. Beresnev, K. Oyoshi, O. M. Ivasichin, H. Amekura, Y. Takeda, M. Opielak, and C. Kozak, J. Alloys Compd. 679, 155 (2016).CrossRefGoogle Scholar
  4. 4.
    A. D. Pogrebnjak, I. V. Yakushchenko, A. A. Bagdasaryan, O. V. Bondar, R. Krause-Rehberg, G. Abadias, P. Chartier, K. Oyoshi, Y. Takeda, V. M. Beresnev, and O. V. Sobol, Mater. Chem. Phys. 147, 1079 (2014).CrossRefGoogle Scholar
  5. 5.
    V. Braic, A. Vladesku, M. Balaceanu, C. R. Luculesku, and M. Braic, Surf. Coat. Technol. 211, 117 (2012).CrossRefGoogle Scholar
  6. 6.
    I. V. Kireeva, I. V. Chumlyakov, Z. V. Pobedennaya, A. V. Vyrodova, A. V. Kuksgauzen, V. V. Poklonov, and D. A. Kuksgauzen, Tech. Phys. Lett. 43, 615 (2017).ADSCrossRefGoogle Scholar
  7. 7.
    A. D. Pogrebnjak, J. Nanomater. 2013, 780125 (2013).CrossRefGoogle Scholar
  8. 8.
    Y. Zhang, T. T. Zuo, Z. Tang, M. C. Cao, K. A. Dahmen, P. K. Liaw, and Z. P. Lu, Prog. Mater. Sci. 61, 1 (2014).CrossRefGoogle Scholar
  9. 9.
    D. C. Tsai, Z. C. Chang, B. H. Kuo, M. H. Shiao, S. Y. Chang, and F. S. Shieu, Appl. Surf. Sci. 282, 789 (2013).ADSCrossRefGoogle Scholar
  10. 10.
    M. H. Tsai, C. W. Wang, C. H. Lai, J. W. Yeh, and J. Y. Gan, Appl. Phys. Lett. 92, 052129 (2008).ADSGoogle Scholar
  11. 11.
    A. A. Andreev, L. P. Sablev, and S. N. Grigor’ev, Vacuum-Arc Coatings (Khark. Fiz. Tekh. Inst., Kharkov, 2010) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. D. Pogrebnjak
    • 1
  • V. M. Beresnev
    • 2
  • O. V. Bondar
    • 1
  • Ya. O. Kravchenko
    • 1
  • B. Zhollybekov
    • 3
  • A. I. Kupchishin
    • 4
  1. 1.Sumy State UniversitySumyUkraine
  2. 2.Karazin Kharkiv National UniversityKharkivUkraine
  3. 3.Berdakh Karakalpak State UniversityNukusUzbekistan
  4. 4.Abai Kazakh National Pedagogical UniversityAlmatyKazakhstan

Personalised recommendations