Technical Physics Letters

, Volume 44, Issue 2, pp 105–107 | Cite as

Evaluation of Constants of Electron–Phonon Coupling between Gas Molecules and Graphene

  • S. Yu. Davydov


The adsorption of CO, NO, NO2, Н2О, and NH3 molecules on ideal graphene and graphene doped with aluminum is analyzed using simple models. The constants of electron–phonon coupling are evaluated with the Lennard-Jones 6–12 potential for ideal graphene and the 2–4 potential for doped graphene. It is demonstrated that the dimensionless electron–phonon-coupling constant for ideal graphene is ζ ≫ 1, while ζ ~ 1 corresponds to graphene doped with aluminum. Ways to use both types of graphene as a resistive gas sensor are discussed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, Nat. Mater 6, 652 (2007).ADSCrossRefGoogle Scholar
  2. 2.
    L. Kong, A. Enders, T. S. Rahman, and P. A. Dowben, J. Phys.: Condens. Matter 26, 443001 (2014).ADSGoogle Scholar
  3. 3.
    Y. You, J. Denga, X. Tan, N. Gorjizadeh, M. Yoshimura, S. C. Smith, V. Sahajwalla, and R. K. Joshi, Phys. Chem. Chem. Phys. 19, 6051 (2017).CrossRefGoogle Scholar
  4. 4.
    S. Yu. Davydov and O. V. Posrednik, Tech. Phys. 62, 656 (2017).CrossRefGoogle Scholar
  5. 5.
    S. Yu. Davydov, Tech. Phys. Lett. 38, 959 (2012).ADSCrossRefGoogle Scholar
  6. 6.
    S. Yu. Davydov, The Theory of Adsorption: Method of Model Hamiltonians (SPbGETU LETI, St. Petersburg, 2013) [in Russian]. Scholar
  7. 7.
    O. Leenaerts, B. Partoens, and F. M. Peeters, Phys. Rev. B 77, 125416 (2008).ADSCrossRefGoogle Scholar
  8. 8.
    Z. M. Ao, J. Yang, S. Li, and Q. Jiang, Chem. Phys. Lett. 461, 276 (2008).ADSCrossRefGoogle Scholar
  9. 9.
    J. Dai, J. Yuan, and P. Giannozzi, Appl. Phys. Lett. 95, 232105 (2009).ADSCrossRefGoogle Scholar
  10. 10.
    W. Wang, Y. Zhang, C. Shen, and Y. Chai, AIP Adv. 6, 025317 (2016).ADSCrossRefGoogle Scholar
  11. 11.
    W. A. Harrison and E. A. Kraut, Phys. Rev. B 37, 8244 (1988).ADSCrossRefGoogle Scholar
  12. 12.
    J.-H. Kim, J. H. Hwang, J. Suh, S. Tongay, S. Kwon, C. C. Hwang, J. Wu, and J. Y. Park, Appl. Phys. Lett. 103, 171604 (2013).ADSCrossRefGoogle Scholar
  13. 13.
    Physical Values, The Handbook, Ed. by I. S. Grigor’ev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991) [in Russian].Google Scholar
  14. 14.
    G. R. Berdiyorov, H. Abdullah, M. Al Ezzi, G. V. Rakhmatullaeva, H. Bahlouli, and N. Tit, AIP Adv. 6, 125102 (2016).ADSCrossRefGoogle Scholar
  15. 15.
    A. A. Lebedev, V. Yu. Davydov, S. N. Novikov, D. P. Litvin, Yu. N. Makarov, V. B. Klimovich, and M. P. Samoilovich, Tech. Phys. Lett. 42, 729 (2016).ADSCrossRefGoogle Scholar
  16. 16.
    T. O. Wehling, K. S. Novoselov, S. V. Morozov, E. E. Vdovin, M. I. Katsnelson, A. K. Geim, and A. I. Lichtenstein, Nano Lett. 8, 173 (2008).ADSCrossRefGoogle Scholar
  17. 17.
    S. Yu. Davydov, Phys. Solid State 59, 845 (2017).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Ioffe Physical Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.ITMO UniversitySt. PetersburgRussia

Personalised recommendations