Advertisement

Technical Physics Letters

, Volume 44, Issue 2, pp 118–122 | Cite as

Elastic and Piezoelectric Parameters of the Crystals of Histidine Phosphite L-Hist · H3РО3 Measured by the Method of Electromechanical Resonance

  • E. V. Balashova
  • B. B. Krichevtsov
  • S. N. Popov
  • P. N. Brunkov
  • G. A. Pankova
  • A. A. Zolotarev
Article
  • 12 Downloads

Abstract

Single crystals of L-histidine phosphite (L-Hist · H3РО3) have been grown from aqueous solution by slow cooling method. The results of elemental analysis, of X-ray-diffraction studies of the crystal structure, and the habitus of the obtained crystals are given. The elastic and piezoelectric coefficients have been measured on the plates with the (010) natural faces by the method of electromechanical resonance for stretching vibrations in the temperature range 295–340 K. Elastic compliance values s33 and s22 and the corresponding elastic-moduli values, piezoelectric coefficients d23 and d22, coefficients of electromechanical coupling, and temperature coefficient of the resonance frequency are obtained. A comparison is given with other crystals, which are compounds of amino acids with phosphorous or phosphoric acid.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Fleck and A. M. Petrosyan, Salts of Amino Acids. Crystallization, Structure and Properties (Springer Int., Switzerland, 2014).Google Scholar
  2. 2.
    V. V. Lemanov, S. N. Popov, and G. A. Pankova, Phys. Solid State 44, 1929 (2002).ADSCrossRefGoogle Scholar
  3. 3.
    E. V. Balashova, B. B. Krichevtsov, N. V. Zaitseva, G. A. Pankova, and F. B. Svinarev, Tech. Phys. Lett. 39, 1004 (2013).ADSCrossRefGoogle Scholar
  4. 4.
    D. A. Filippov, T. O. Firsova, V. M. Laletin, and N. N. Poddubnaya, Tech. Phys. Lett. 43, 313 (2017).ADSCrossRefGoogle Scholar
  5. 5.
    V. M. Laletin, D. A. Filippov, and T. O. Firsova, Tech. Phys. Lett. 40, 237 (2014).ADSCrossRefGoogle Scholar
  6. 6.
    C. R. Bowen, V. Yu. Topolov, and H. A. Kim, Modern Piezoelectric Energy-Harvesting Materials, Springer Ser. Mater. Sci. 238 (2016).Google Scholar
  7. 7.
    Ch. Bosshard, J. Hulliger, M. Florsheimer, and P. Gunter, Organic Nonlinear Optical Materials, Adv. Nonlinear Opt. (CRC, Gordon and Breach, 2001).Google Scholar
  8. 8.
    H. O. Marcy, M. J. Rosker, L. F. Warren, P. H. Cunningham, C. A. Thomas, L. A. DeLoach, S. P. Velsko, C. A. Ebbers, J.-H. Liao, and M. G. Kanatzidis, Opt. Lett. 20, 252 (1995).ADSCrossRefGoogle Scholar
  9. 9.
    M. T. Averbuch-Pouchot, Z. Kristallogr. 207, 111 (1993).Google Scholar
  10. 10.
    G. M. Sheldrick, Acta Crystallogr. C 71, 3 (2015).CrossRefGoogle Scholar
  11. 11.
    O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann, J. Appl. Crystallogr. 42, 339 (2009).CrossRefGoogle Scholar
  12. 12.
    CrysAlisPro, Agilent Technologies, Version 1.171.36.20 (2012).Google Scholar
  13. 13.
    K. Hasebe, S. Tsuchiya, Y. Kawamura, and T. Asahi, J. Phys. Soc. Jpn. 70, 3300 (2001).ADSCrossRefGoogle Scholar
  14. 14.
    M. T. Averbuch-Pouchot, Acta Crystallogr. C 49, 815 (1993).CrossRefGoogle Scholar
  15. 15.
    W. Cady, J. Opt. Soc. Am. 10, 475 (1925).ADSCrossRefGoogle Scholar
  16. 16.
    B. A. Strukov and A. P. Levanyuk, Ferroelectric Phenomena in Crystals: Physical Foundations (Nauka, Fizmatlit, Moscow, 1995; Springer, Berlin, Heidelberg, 1998).CrossRefzbMATHGoogle Scholar
  17. 17.
    W. Mason, Piezoelectric Crystals and Their Application to Ultrasonics, Bell Laboratories Series (Van Nostrand, New York, 1950).Google Scholar
  18. 18.
    I. M. Sil’vestrova, G. N. Nabakhtiani, V. B. Kozin, V. A. Kuznetsov, and Yu. V. Pisarevskii, Sov. Phys. Crystallogr. 37, 831 (1992).Google Scholar
  19. 19.
    E. V. Balashova and V. V. Lemanov, Ferroelectrics 412, 59 (2011).CrossRefGoogle Scholar
  20. 20.
    E. V. Balashova, V. V. Lemanov, and G. A. Pankova, Phys. Solid State 47, 183 (2005).ADSCrossRefGoogle Scholar
  21. 21.
    E. V. Balashova and V. V. Lemanov, Ferroelectrics 285, 179 (2003).CrossRefGoogle Scholar
  22. 22.
    E. V. Balashova, V. V. Lemanov, and G. A. Pankova, Phys. Solid State 43, 1328 (2001).ADSCrossRefGoogle Scholar
  23. 23.
    M. Maeda, J. Phys. Soc. Jpn. 57, 2162 (1988), J. Phys. Soc. Jpn. 57, 3059 (1988).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • E. V. Balashova
    • 1
  • B. B. Krichevtsov
    • 1
  • S. N. Popov
    • 1
  • P. N. Brunkov
    • 1
  • G. A. Pankova
    • 2
  • A. A. Zolotarev
    • 3
  1. 1.Ioffe Physical Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Institute of Macromolecular CompoundsRussian Academy of SciencesSt. PetersburgRussia
  3. 3.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations