Technical Physics Letters

, Volume 43, Issue 9, pp 846–848 | Cite as

Study of the relaxation rate of photoexcited indole molecules by the interferometric pump-and-probe method at picosecond resolution

  • A. L. Glazov
  • A. D. Il’ina
  • A. A. Sukharev
  • O. S. Vasyutinskii
Article
  • 14 Downloads

Abstract

We present a new interferometric method that can be used for studying the dynamics of photoinduced processes in biologically important molecules at ultrahigh temporal resolution. The method is based upon the detection of changes in the refractive index of a substance excited by pulsed radiation of a femtosecond laser, which are measured by the pump-and-probe technique using time-delayed pulses of the same laser. The high sensitivity and stability of the interferometer allow this method to be used for monitoring variation of the concentration of short-lived excited states of biomolecules in solution. The proposed method has been verified by application to indole solutions in propylene glycol. The upper estimate of the lifetime of photoexcited indole molecules in solution amounted to about 40 ps.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.-F. Lin, C.-M. Tzeng, Yu. A. Dyakov, et al., J. Chem. Phys. 126, 241104 (2007).ADSCrossRefGoogle Scholar
  2. 2.
    Z. G. Lan, W. Komcke, V. Vallet, et al., J. Chem. Phys. 122, 224315 (2005).ADSCrossRefGoogle Scholar
  3. 3.
    I. Conti, M. Garavelli, and G. Orlandi, AIP Conf. Proc. 963, 655 (2007).ADSCrossRefGoogle Scholar
  4. 4.
    S. Denicke, K. H. Gericke, A. G. Smolin, et al., J. Phys. Chem. A 114, 9681 (2010).CrossRefGoogle Scholar
  5. 5.
    S. Herbrich, K.-H. Gericke, A. G. Smolin, et al., J. Phys. Chem. A 118, 5248 (2014).CrossRefGoogle Scholar
  6. 6.
    S. Herbrich, T. Al-Hadhuri, K.-H. Gericke, et al., J. Chem. Phys. 142, 024310 (2015).ADSCrossRefGoogle Scholar
  7. 7.
    O. S. Vasyutinskii, A. G. Smolin, C. Oswald, and K. H. Gericke, Opt. Spectrosc. 122, 602 (2017).ADSCrossRefGoogle Scholar
  8. 8.
    J. S. Floyd, N. Haralampus-Grynaviski, T. Ye, et al., J. Phys. Chem. B 105, 1478 (2001).CrossRefGoogle Scholar
  9. 9.
    T. Gensch and C. Viappiani, Photochem. Photobiol. Sci. 2, 699 (2003).CrossRefGoogle Scholar
  10. 10.
    K. A. Nelson, R. Casalegno, R. J. Dwayne Miller, et al., J. Chem. Phys. 77, 1144 (1982).ADSCrossRefGoogle Scholar
  11. 11.
    J. R. Salcedo, A. E. Siegman, D. D. Dlott, et al., Phys. Rev. Lett. 41, 131 (1978).ADSCrossRefGoogle Scholar
  12. 12.
    M. Terazima, T. Hara, and N. Hirota, J. Phys. Chem. 97, 10554 (1993).CrossRefGoogle Scholar
  13. 13.
    E. C. Ximendes, W. F. Silva, M. V. D. Vermelho, et al., Opt. Express 23, 15983 (2015).ADSCrossRefGoogle Scholar
  14. 14.
    J. R. Silva, L. C. Malacarne, M. L. Baesso, et al., Opt. Lett. 38, 422 (2013).ADSCrossRefGoogle Scholar
  15. 15.
    C. M. Chopin and J. H. Wharton, Chem. Phys. Lett. 3, 552 (1969).ADSCrossRefGoogle Scholar
  16. 16.
    A. L. Glazov and K. L. Muratikov, Int. J. Optoelectron. 4, 589 (1989).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. L. Glazov
    • 1
  • A. D. Il’ina
    • 1
  • A. A. Sukharev
    • 1
  • O. S. Vasyutinskii
    • 1
  1. 1.Ioffe Physical Technical InstituteRussian Academy of SciencesSt. Petersburg.Russia

Personalised recommendations