Advertisement

Technical Physics Letters

, Volume 43, Issue 9, pp 779–782 | Cite as

Electroluminescent study of the efficiency of silicon heterostructural solar cells

  • V. N. Verbitskii
  • I. E. Panaiotti
  • S. E. Nikitin
  • A. V. Bobyl’
  • G. G. Shelopin
  • D. A. Andronikov
  • A. S. Abramov
  • A. V. Sachenko
  • E. I. Terukov
Article
  • 21 Downloads

Abstract

A strong (by more than an order of magnitude) change in the electroluminescence intensity is observed for the first time in high-quality heterojunction solar cells that are based on a single-crystal silicon and have an efficiency of 18 to 20.5%. This effect occurs due to the sharp change in the concentration of the recombination centers on the surface of single-crystal silicon wafers in the course of their pyramidal texturing and also due to the rise in the series resistance. The effect can be used for a quantitative highly sensitive characterization of the texturing, which is a fundamentally important stage in fabricating highly efficient silicon solar cells.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. A. Forsh, D. M. Zhigunov, A. V. Bobyl’, et al., in Proceedings of the 10th International Conference on Amorphous and Microcrystalline Semiconductors (Fiz. Tekh. Inst. im. A.F. Ioffe RAN, St. Petersburg, 2016), p.209.Google Scholar
  2. 2.
    A. K. Chu, J. S. Wang, Z. Y. Tsai, and C. K. Lee, Solar Energy Mater. Solar Cells 93, 1276 (2009).CrossRefGoogle Scholar
  3. 3.
    I. Zubel, F. Granek, K. Rola, and K. Banaszczyk, Appl. Surf. Sci. 258, 9067 (2012).ADSCrossRefGoogle Scholar
  4. 4.
    A. Goodrich, P. Hacke, et al., Solar Energy Mater. Solar Cells 114, 110 (2013).CrossRefGoogle Scholar
  5. 5.
    A. V. Sachenko, Yu. V. Kryuchenko, et al., J. Appl. Phys. 119, 225702 (2016).ADSCrossRefGoogle Scholar
  6. 6.
    V. N. Igumnov, Physical Principles of Microelectronics (Direkt-Media, Berlin, 2015), p. 245 [in Russian].Google Scholar
  7. 7.
    A. V. Sachenko, Yu. V. Kryuchenko, V. P. Kostylyov, I. O. Sokolovskyi, A. S. Abramov, A. V. Bobyl, I. E. Panaiotti and E. I. Terukov, Semiconductors 50, 257 (2016).ADSCrossRefGoogle Scholar
  8. 8.
    A. V. Sachenko, A. I. Shkrebtii, R. M. Korkishko, V. P. Kostylyov, N. R. Kulish, and I. O. Sokolovskyi, Semiconductors 49, 264 (2015).ADSCrossRefGoogle Scholar
  9. 9.
    A. V. Sachenko, Yu. V. Kryuchenko, A. V. Bobyl’, V. P. Kostylyov, E. I. Terukov, D. A. Bogdanov, I. E. Panaiotti, I. O. Sokolovskyi, and D. L. Orekhov, Tech. Phys. Lett. 41, 482 (2015).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. N. Verbitskii
    • 1
  • I. E. Panaiotti
    • 1
  • S. E. Nikitin
    • 1
  • A. V. Bobyl’
    • 1
  • G. G. Shelopin
    • 2
  • D. A. Andronikov
    • 2
  • A. S. Abramov
    • 2
  • A. V. Sachenko
    • 1
  • E. I. Terukov
    • 1
    • 2
  1. 1.Ioffe Physical Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.R&D Center for Thin-Film Technologies in Energetics, Ioffe Physical Technical InstituteRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations