Technical Physics Letters

, Volume 43, Issue 9, pp 808–810 | Cite as

Investigation of dynamic resistance to the shear of water-saturated sand according to the results of the inverse experiment technique

  • V. L. Kotov
  • V. V. Balandin
  • A. M. Bragov
  • Vl. Vl. Balandin
Article
  • 12 Downloads

Abstract

The results of an investigation of the shear resistance for compacted dry and water-saturated sand are presented on the basis of the experimental-calculation analysis of the drag force at the quasi-stationary penetration stage of a cylindrical impactor. We used a method proposed earlier based on the inverse experiment technique and using a measuring rod with a flat end. It is shown that with almost the complete water saturation of sand its shear properties decrease but remain significant in the practically important range of penetration rates.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. A. Lagunov and V. A. Stepanov, Prikl. Mat. Teor. Fiz., No. 1, 88 (1963).Google Scholar
  2. 2.
    M. D. Dianov, N. A. Zlatin, S. M. Mochalov, et al., Sov. Tech. Phys. Lett. 2, 207 (1976).Google Scholar
  3. 3.
    A. M. Bragov and G. M. Grushevskii, Tech. Phys. Lett. 19, 385 (1993).ADSGoogle Scholar
  4. 4.
    A. M. Bragov, A. K. Lomunov, I. V. Sergeichev, W. Proud, K. Tsembelis, and P. Church, Tech. Phys. Lett. 31, 530 (2005).ADSCrossRefGoogle Scholar
  5. 5.
    Yu. K. Bivin, Mech. Solids 43, 131 (2008).ADSCrossRefGoogle Scholar
  6. 6.
    V. V. Balandin and A. M. Bragov, in Applied Problems of Strength and Plasticity. Solving Methods, Interschool Collection of Articles (Nizhegor. Gos. Univ., Nizh. Novgorod, 1991), p. 101 [in Russian].Google Scholar
  7. 7.
    A. M. Bragov, V. V. Balandin, A. K. Lomunov, and A. R. Filippov, Tech. Phys. Lett. 32, 487 (2006).ADSCrossRefGoogle Scholar
  8. 8.
    V. G. Bazhenov and V. L. Kotov, Dokl. Phys. 51, 279 (2006).ADSCrossRefGoogle Scholar
  9. 9.
    V. L. Kotov, V. V. Balandin, A. M. Bragov, and Vl. Vl. Balandin, Dokl. Phys. 58, 309 (2013).ADSCrossRefGoogle Scholar
  10. 10.
    V. V. Balandin, Vl. Vl. Balandin, A. M. Bragov, and V. L. Kotov, Tech. Phys. 61, 860 (2016).CrossRefGoogle Scholar
  11. 11.
    A. N. Dremin and I. A. Karpukhin, Prikl. Mat. Teor. Fiz., No. 3, 184 (1963).Google Scholar
  12. 12.
    P. S. Follansbee and C. Frantz, J. Eng. Mater. Technol. 105, 61 (1983).CrossRefGoogle Scholar
  13. 13.
    D. Gorham, J. Phys. E: Sci. Instrum. 16, 477 (1983).ADSCrossRefGoogle Scholar
  14. 14.
    A. Tyas and D. J. Pope, Meas. Sci. Technol. 16, 642 (2005).CrossRefGoogle Scholar
  15. 15.
    R. Merle and H. Zhao, Int. J. Impact Eng. 32, 1964 (2006).CrossRefGoogle Scholar
  16. 16.
    A. Tyas and Z. Ozdemir, Phil. Trans._R. Soc. A 37 (2), 1 (2014).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. L. Kotov
    • 1
  • V. V. Balandin
    • 1
  • A. M. Bragov
    • 1
  • Vl. Vl. Balandin
    • 1
  1. 1.Research Institute of MechanicsLobachevsky State University of Nizhny NovgorodNizhny NovgorodRussia

Personalised recommendations