Skip to main content
Log in

A model of axial heterostructure formation in III–V semiconductor nanowires

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

A kinetic model of the formation of axial heterostructures in nanocrystalline wires (nanowires, NWs) of III–V semiconductor compounds growing according to the vapor–liquid–solid (VLS) mechanism is proposed. A general system of nonstationary equations for effective fluxes of two elements of the same group (e.g., group III) is formulated that allows the composition profile of a heterostructure to be calculated as a function of the coordinate and epitaxial growth conditions, including the flux of a group V element. Characteristic times of the composition relaxation, which determine the sharpness of the heteroboundary (heterointerface), are determined in the linear approximation. A temporal interruption (arrest) of fluxes during the switching of elements for a period exceeding these relaxation times must increase sharpness of the heteroboundary. Model calculations of the composition profile in a double GaAs/InAs/GaAs axial heterostructure have been performed for various NW radii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Zhang, V. G. Dubrovskii, N. V. Sibirev, et al., Cryst. Growth Des. 11, 5441 (2011).

    Article  Google Scholar 

  2. G. Abstreiter, Phys. Status Solidi RRL 1, 20 (2013).

    Google Scholar 

  3. S. G. Ghalamestani, M. Ek, M. Ghasemi, et al., Nanoscale 6, 1086 (2014).

    Article  ADS  Google Scholar 

  4. M. T. Bjork, B. J. Ohlsson, T. Saas, et al., Nano Lett. 2, 87 (2002).

    Article  ADS  Google Scholar 

  5. M. Tchernycheva, G. E. Cirlin, G. Patriarche, et al., Nano Lett. 7, 1500 (2007).

    Article  ADS  Google Scholar 

  6. G. Priante, G. Patriarche, F. Oehler, et al., Nano Lett. 15, 6036 (2015); doi 10.1021/acsnanolett.5b02224

    Article  ADS  Google Scholar 

  7. P. Periwal, N. V. Sibirev, G. Patriarche, et al., Nano Lett. 14, 5140 (2014).

    Article  Google Scholar 

  8. N. V. Sibirev, Tech. Phys. Lett. 41 (3), 209 (2015).

    Article  ADS  Google Scholar 

  9. V. G. Dubrovskii and M. V. Nazarenko, J. Chem. Phys. 132, 114507 (2010).

    Article  ADS  Google Scholar 

  10. M. Ghasemi, B. Sundman, S. G. Fries, et al., J. Alloys Compd. 600, 178 (2014).

    Article  Google Scholar 

  11. V. G. Dubrovskii, N. V. Sibirev, R. A. Suris, et al., Surf. Sci. 601, 4395 (2007).

    Article  ADS  Google Scholar 

  12. V. G. Dubrovskii, I. P. Soshnikov, N. V. Sibirev, et al., J. Cryst. Growth 289, 31 (2006).

    Article  ADS  Google Scholar 

  13. V. Consonni, V. G. Dubrovskii, A. Trampert, et al., Phys. Rev. B 85, 155313 (2012).

    Article  ADS  Google Scholar 

  14. V. G. Dubrovskii, Appl. Phys. Lett. 104, 053110 (2014).

    Article  ADS  Google Scholar 

  15. G. Priante, S. Ambrosini, V. G. Dubrovskii, et al., Cryst. Growth Des. 13, 3976 (2013).

    Article  Google Scholar 

  16. V. G. Dubrovskii, Phys. Rev. B 87, 195426 (2013).

    Article  ADS  Google Scholar 

  17. S. A. Kukushkin and A. V. Osipov, Phys. Solid State 36, 687 (1994).

    ADS  Google Scholar 

  18. S. A. Kukushkin and A. V. Osipov, J. Phys. Chem. Solids 56, 831 (1995).

    Article  ADS  Google Scholar 

  19. V. G. Dubrovskii, I. P. Soshnikov, G. E. Cirlin, et al., Phys. Status Solidi (b) 241, R30 (2004).

    Article  ADS  Google Scholar 

  20. N. V. Sibirev, M. A. Timofeeva, A. D. Bol’shakov, M. V. Nazarenko, and V. G. Dubrovskii, Phys. Solid State 52 (7), 1531 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Dubrovskii.

Additional information

Original Russian Text © V.G. Dubrovskii, 2016, published in Pis’ma v Zhurnal Tekhnicheskoi Fiziki, 2016, Vol. 42, No. 6, pp. 104–110.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubrovskii, V.G. A model of axial heterostructure formation in III–V semiconductor nanowires. Tech. Phys. Lett. 42, 332–335 (2016). https://doi.org/10.1134/S1063785016030196

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785016030196

Keywords

Navigation