Scanning near-field optical nanotomography: a new method of multiparametric 3D investigation of nanostructural materials

An Erratum to this article was published

Abstract

A new experimental approach to multiparametric three-dimensional (3D) investigation of a broad class of composite nanostructural materials is developed on the basis of scanning near-field optical nanotomography (SNONT). Using this method, it is possible to simultaneously study the optical properties, 3D morphology, and distribution of the mechanical and electrical properties of the same region of a sample. The proposed method combines features of the confocal and near-field optical microspectroscopy (fluorescence and Raman spectroscopy) with a lateral resolution of up to 50 nm and scanning-probe microscopy. The possibility of studying the volume distribution of optical, morphological, electrical, and mechanical characteristics of a material with nanoscale resolution is related to the probing of sequential layers at a step of up to 20 nm and a total Z-scan depth of up to 3 mm. In particular, the SNONT method has been used to study a liquid-crystalline polymer doped with fluorescent nanocrystals.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    J. Caplan, M. Niethammer, R. M. Taylor, and K. J. Czymmek, Curr. Opin. Struct. Biol. 21 (5), 686 (2011).

    Article  Google Scholar 

  2. 2.

    A. A. Mironov and G. V. Beznoussenko, J. Microsc. 235, 308 (2009).

    MathSciNet  Article  Google Scholar 

  3. 3.

    C. Spiegelhalter, V. Tosch, D. Hentsch, et al., PLoS One 5, e9014 (2010).

    ADS  Article  Google Scholar 

  4. 4.

    J. Colombelli, A. Besser, H. Kress, et al., J. Cell Sci. 122, 1665 (2009).

    Article  Google Scholar 

  5. 5.

    A. Labernadie, C. Thibault, C. Vieu, I. Maridonneau-Parini, and G. M. Charriére, Proc. Natl. Acad. Sci. USA 107 (49), 21016 (2010).

    ADS  Article  Google Scholar 

  6. 6.

    E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, Science 251, 1468 (1991).

    ADS  Article  Google Scholar 

  7. 7.

    F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, Appl. Phys. Lett. 65, 1623 (1994).

    ADS  Article  Google Scholar 

  8. 8.

    B. Pettinger, B. Ren, G. Picardi, R. Schuster, and G. Ertl, Phys. Rev. Lett. 92, 096101 (2004).

    ADS  Article  Google Scholar 

  9. 9.

    I. Amenabar, S. Poly, W. Nuansing, E. H. Hubrich, A. A. Govyadinov, F. Huth, R. Krutokhvostov, L. Zhang, M. Knez, J. Heberle, A. M. Bittner, and R. Hillenbrand, Nature Commun. 4, 2890 (2013).

    ADS  Article  Google Scholar 

  10. 10.

    A. E. Efimov, A. G. Tonevitsky, M. Dittrich, and N. B. Matsko, J. Microsc 226, 207 (2007).

    MathSciNet  Article  Google Scholar 

  11. 11.

    A. E. Efimov, H. Gnaegi, R. Schaller, W. Grogger, F. Hofer, and N. B. Matsko, Soft Matter 8, 9756 (2012).

    ADS  Article  Google Scholar 

  12. 12.

    K. E. Mochalov, A. E. Efimov, A. Bobrovsky, I. I. Agapov, A. A. Chistyakov, V. Oleinikov, A. Sukhanova, and I. Nabiev, ACS Nano 7 (10), 8953 (2013).

    Article  Google Scholar 

  13. 13.

    A. Bobrovsky, K. Mochalov, V. Oleinikov, A. Sukhanova, A. Prudnikau, M. Artemyev, V. Shibaev, and I. Nabiev, Adv. Mater. 24 (46), 6216 (2012).

    Article  Google Scholar 

  14. 14.

    A. Bobrovsky, P. Samokhvalov, and V. Shibaev, Adv. Opt. Mater. 2, 1167 (2014).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to K. E. Mochalov.

Additional information

Original Russian Text © A.E. Efimov, A.Yu. Bobrovsky, I.I. Agapov, O.I. Agapova, V.A. Oleinikov, I.R. Nabiev, K.E. Mochalov, 2016, published in Pis’ma v Zhurnal Tekhnicheskoi Fiziki, 2016, Vol. 42, No. 4, pp. 10–15.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Efimov, A.E., Bobrovsky, A.Y., Agapov, I.I. et al. Scanning near-field optical nanotomography: a new method of multiparametric 3D investigation of nanostructural materials. Tech. Phys. Lett. 42, 171–174 (2016). https://doi.org/10.1134/S1063785016020231

Download citation

Keywords

  • Technical Physic Letter
  • Correlation Microscopy
  • Cantilever Probe
  • Nanoscale Resolution
  • Hybrid Nanostructural Material