Technical Physics Letters

, Volume 42, Issue 2, pp 171–174 | Cite as

Scanning near-field optical nanotomography: a new method of multiparametric 3D investigation of nanostructural materials

  • A. E. Efimov
  • A. Yu. Bobrovsky
  • I. I. Agapov
  • O. I. Agapova
  • V. A. Oleinikov
  • I. R. Nabiev
  • K. E. MochalovEmail author


A new experimental approach to multiparametric three-dimensional (3D) investigation of a broad class of composite nanostructural materials is developed on the basis of scanning near-field optical nanotomography (SNONT). Using this method, it is possible to simultaneously study the optical properties, 3D morphology, and distribution of the mechanical and electrical properties of the same region of a sample. The proposed method combines features of the confocal and near-field optical microspectroscopy (fluorescence and Raman spectroscopy) with a lateral resolution of up to 50 nm and scanning-probe microscopy. The possibility of studying the volume distribution of optical, morphological, electrical, and mechanical characteristics of a material with nanoscale resolution is related to the probing of sequential layers at a step of up to 20 nm and a total Z-scan depth of up to 3 mm. In particular, the SNONT method has been used to study a liquid-crystalline polymer doped with fluorescent nanocrystals.


Technical Physic Letter Correlation Microscopy Cantilever Probe Nanoscale Resolution Hybrid Nanostructural Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Caplan, M. Niethammer, R. M. Taylor, and K. J. Czymmek, Curr. Opin. Struct. Biol. 21 (5), 686 (2011).CrossRefGoogle Scholar
  2. 2.
    A. A. Mironov and G. V. Beznoussenko, J. Microsc. 235, 308 (2009).MathSciNetCrossRefGoogle Scholar
  3. 3.
    C. Spiegelhalter, V. Tosch, D. Hentsch, et al., PLoS One 5, e9014 (2010).ADSCrossRefGoogle Scholar
  4. 4.
    J. Colombelli, A. Besser, H. Kress, et al., J. Cell Sci. 122, 1665 (2009).CrossRefGoogle Scholar
  5. 5.
    A. Labernadie, C. Thibault, C. Vieu, I. Maridonneau-Parini, and G. M. Charriére, Proc. Natl. Acad. Sci. USA 107 (49), 21016 (2010).ADSCrossRefGoogle Scholar
  6. 6.
    E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, Science 251, 1468 (1991).ADSCrossRefGoogle Scholar
  7. 7.
    F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, Appl. Phys. Lett. 65, 1623 (1994).ADSCrossRefGoogle Scholar
  8. 8.
    B. Pettinger, B. Ren, G. Picardi, R. Schuster, and G. Ertl, Phys. Rev. Lett. 92, 096101 (2004).ADSCrossRefGoogle Scholar
  9. 9.
    I. Amenabar, S. Poly, W. Nuansing, E. H. Hubrich, A. A. Govyadinov, F. Huth, R. Krutokhvostov, L. Zhang, M. Knez, J. Heberle, A. M. Bittner, and R. Hillenbrand, Nature Commun. 4, 2890 (2013).ADSCrossRefGoogle Scholar
  10. 10.
    A. E. Efimov, A. G. Tonevitsky, M. Dittrich, and N. B. Matsko, J. Microsc 226, 207 (2007).MathSciNetCrossRefGoogle Scholar
  11. 11.
    A. E. Efimov, H. Gnaegi, R. Schaller, W. Grogger, F. Hofer, and N. B. Matsko, Soft Matter 8, 9756 (2012).ADSCrossRefGoogle Scholar
  12. 12.
    K. E. Mochalov, A. E. Efimov, A. Bobrovsky, I. I. Agapov, A. A. Chistyakov, V. Oleinikov, A. Sukhanova, and I. Nabiev, ACS Nano 7 (10), 8953 (2013).CrossRefGoogle Scholar
  13. 13.
    A. Bobrovsky, K. Mochalov, V. Oleinikov, A. Sukhanova, A. Prudnikau, M. Artemyev, V. Shibaev, and I. Nabiev, Adv. Mater. 24 (46), 6216 (2012).CrossRefGoogle Scholar
  14. 14.
    A. Bobrovsky, P. Samokhvalov, and V. Shibaev, Adv. Opt. Mater. 2, 1167 (2014).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • A. E. Efimov
    • 2
    • 3
  • A. Yu. Bobrovsky
    • 4
  • I. I. Agapov
    • 2
  • O. I. Agapova
    • 2
  • V. A. Oleinikov
    • 1
    • 5
  • I. R. Nabiev
    • 5
    • 6
  • K. E. Mochalov
    • 1
    • 5
    Email author
  1. 1.Shumakov Federal Research Center of Transplantology and Artificial OrgansMinistry of Public Health of the Russian FederationMoscowRussia
  2. 2.SNOTRA CompanyMoscowRussia
  3. 3.Moscow State UniversityMoscowRussia
  4. 4.National Research Nuclear University Moscow Engineering Physics Institute (MEPhI)MoscowRussia
  5. 5.Shemyakin–Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
  6. 6.Laboratory of Research in NanosciencesUniversité de Reims Champagne-ArdenneReimsFrance

Personalised recommendations