Skip to main content
Log in

Simulation of evolution of the two cylinders plasma wake under the electric discharge influence

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

We consider a close wake behind a pair of cylinders at a Reynolds number of Re ~ 1000 defined by the cylinder diameter in the case of small aspect ratio of cylinders, H/D ≈ 3.5. The large-scale structure of such a wake represents a f low like two interacting Karman streets and it is modeled by two coupled Van der Pol oscillators. The mutual inf luence of closely located Karman streets is accounted for by nonlinear (of a general parabolic type) terms in the equations for oscillators. Moreover, the equations are generalized with allowance for explicit dependence of the oscillation frequency on its amplitude. Within the framework of this three-parametric model, five collective modes of the wake behind cylinders were found. In addition, there are the domains of model parameters where qualitatively different modes of intermittent wake exist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Efimov, V. V. Ivanov, A. V. Bagazeev, I. V. Beketov, I. A. Volkov, and S. V. Shcherbinin, Tech. Phys. Lett. 39 (12), 1053–1056 (2013).

    Article  ADS  Google Scholar 

  2. R. Sosa, G. Artana, N. Benard, and E. Moreau, Exp. Fluids 51, 853 (2011).

    Article  Google Scholar 

  3. S. A. Isaev, P. A. Baranov, A. G. Sudakov, and A. M. Ermakov, Tech. Phys. Lett. 41 (1), 76 (2015).

    Article  ADS  Google Scholar 

  4. D. V. Tereshonok, Tech. Phys. Lett. 40 (2), 135 (2014).

    Article  ADS  Google Scholar 

  5. D. Sumner, J. Fluids Struct. 26, 849 (2010).

    Article  ADS  Google Scholar 

  6. Md. M. Alam, Y. Zhou and X. W. Wang, J. Fluid Mech. 669, 432 (2011).

    Article  ADS  MATH  Google Scholar 

  7. H. Huang and Y. Wang, Opt. Eng. 49 (11), 114201 (2011).

    Article  ADS  Google Scholar 

  8. G. V. Gembarzhevskii, Tech. Phys. Lett. 35 (3), 241 (2009).

    Article  ADS  Google Scholar 

  9. G. V. Gembarzhevskii and A. K. Lednev, Proc. 12thWorkshop on Magneto-Plasma Aerodynamics, Ed. by V. A. Bityurin (JIHT RAS, Moscow, 26–28 March, 2013), p.67.

  10. G. V. Gembarzhevskii, J. Mod. Phys. 6 (1), 46 (2015).

    Article  Google Scholar 

  11. G. V. Gembarzhevskii and K. Yu. Osipenko, Proc. Int. Conf. on Computational Mechanics and Modern Applied Codes (May 24–31, Alushta, 2015), p. 404 [in Russian].

    Google Scholar 

  12. A. N. Ryabinin, Mat. Model. 9 (7), 26 (1997) [in Russian].

    MATH  Google Scholar 

  13. E. Simiu and R. Skanlan, Wind Effects on Structures (Wiley & Sons, 1978).

    Google Scholar 

  14. G. V. Gembarzhevskii, Contributed Papers of Int. Conf. Plasma Physics and Plasma Technology (Sepember 29–October 2, Minsk, 2009), Vol. 1, p.27.

    Google Scholar 

  15. N. N. Bogoliubov and Yu. A. Mitropolskii, Asymptotical Methods in the Theory of Nonlinear Oscillations (Gordon and Breach, New York, 1961).

    Google Scholar 

  16. G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers (McGraw-Hill, New York, 1961).

    MATH  Google Scholar 

  17. I. Peschard, Phys. Rev. Lett. 77 (15), 3122 (1996).

    Article  ADS  Google Scholar 

  18. P. S. Landa, Nonlinear Oscillations and Waves in Dynamical Systems (Kluwer Academic Publ., Dordrecht-Boston-London 1996).

    Book  MATH  Google Scholar 

  19. V. P. Budaev, S. P. Savin, and L. M. Zelenyi, Phys.-Usp. 54 (9), 875 (2011).

    Article  ADS  Google Scholar 

  20. O. I. Moskalenko, A. A. Koronovskii, M. O. Zhuravlev, and A. E. Khramov, Tech. Phys. Lett. 41 (1), 18 (2015).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Gembarzhevskii.

Additional information

Original Russian Text © G.V. Gembarzhevskii, A.K. Lednev, K.Yu. Osipenko, 2015, published in Pis’ma v Zhurnal Tekhnicheskoi Fiziki, 2015, Vol. 41, No. 23, pp. 40–48.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gembarzhevskii, G.V., Lednev, A.K. & Osipenko, K.Y. Simulation of evolution of the two cylinders plasma wake under the electric discharge influence. Tech. Phys. Lett. 41, 1132–1135 (2015). https://doi.org/10.1134/S1063785015120056

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785015120056

Keywords

Navigation