Skip to main content
Log in

Solving the inverse boundary-value problem for a model of the distribution of nanoparticles in magnetic field

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

The inverse problem of determining a region in which the velocities of magnetic particles or biological cells modified by these particles (microaggregates) vanish has been formulated and solved. The zerovelocity isolines have been determined for three variants of arrangement of a permanent magnet. A solution of the inverse problem for particles in the gravitational field at preset values of the magnetic induction, density of medium, concentration of microaggregates, size of nanoparticles, and their magnetization depends on the size of biological cell and the number of attached nanoparticles. Using this solution, it is possible to determine the region in which microaggregates are captured by the magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ph. G. Rutberg, V. A. Kolikov, V. E. Kurochkin, L. K. Panina, and A. Ph. Rutberg, IEEE Trans. Plasma Sci. 35 (4), 1111 (2007).

    Article  ADS  Google Scholar 

  2. F. G. Rutberg, V. A. Kolikov, V. E. Kurochkin, and V. G. Mal’tsev, RF Patent no. 2272697 (priority of September 7, 2004; registered March 27, 2006).

    Google Scholar 

  3. F. G. Rutberg, V. A. Kolikov, V. N. Snetov, A. Yu. Stogov, E. G. Abramov, E. V. Bogomolova, and L. K. Panina, Tech. Phys. 57 (12), 1661 (2012).

    Article  Google Scholar 

  4. A. K. Gupta and M. Gupta, Biomaterials 26 (18), 3995 (2005).

    Article  Google Scholar 

  5. S. C. N. Tang and I. M. C. Lo, Water Res. 47, 2613 (2013).

    Article  Google Scholar 

  6. R. Fakhrullin, J. Garcia-Alonso, and V. A. Paunov, Soft Matter, No. 6, 391 (2010).

    Article  ADS  Google Scholar 

  7. N. Pamme and C. Wilhelm, Lab Chip 6, 974 (2006).

    Article  Google Scholar 

  8. C. Wilhelm et al., Phys. Rev. E 75 (4), 041906 (2007).

    Article  ADS  Google Scholar 

  9. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Fizmatlit, Moscow, 2005) [in Russian].

    Google Scholar 

  10. S. I. Syrovatskii, Usp. Fiz. Nauk 62 (3), 247 (1957).

    Article  Google Scholar 

  11. M. I. Shliomis, Sov. Phys. Usp. 17 (3), 153 (1974).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Kolikov.

Additional information

Original Russian Text © F.G. Rutberg, E.G. Abramov, E.V. Bogomolova, V.A. Kolikov, L.K. Panina, V.N. Snetov, 2015, published in Pis’ma v Zhurnal Tekhnicheskoi Fiziki, 2015, Vol. 41, No. 18, pp. 23–29.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rutberg, F.G., Abramov, E.G., Bogomolova, E.V. et al. Solving the inverse boundary-value problem for a model of the distribution of nanoparticles in magnetic field. Tech. Phys. Lett. 41, 877–879 (2015). https://doi.org/10.1134/S106378501509028X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378501509028X

Keywords

Navigation