Technical Physics Letters

, Volume 41, Issue 9, pp 887–890 | Cite as

Laser images recording on aerosol-synthesized single-walled carbon nanotube films

  • G. M. Mikheev
  • K. G. Mikheev
  • I. V. Anoshkin
  • A. G. Nasibulin


It is shown that images on semitransparent conducting films of aerosol-synthesized single-walled carbon nanotubes (SWCNTs) can be recorded using focused low-power radiation of a He–Ne laser operating at a wavelength of 632.8 nm. Both free-standing films and those deposited on glass or polymer substrates can be used. Laser recording of images on the polymer-supported films is possible due to their transparency increased as a result of chemical reactions between iron nanoparticles encapsulated in SWCNTs and the products of local thermal decomposition of the polymer. Recording on the free-standing SWCNT films and those supported on glass substrates was performed upon acid treatment of the film surface.


Laser Radiation Technical Physic Letter Iron Nanoparticles Laser Radiation Power Radiation Power Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Hasan, Z. Sun, F. Wang, et al., Adv. Mater. 21, 3874 (2009).CrossRefGoogle Scholar
  2. 2.
    Z. Sun, T. Hasan, and A. C. Ferrari, Low-Dim. Syst. Nanostruct. 44, 1082 (2012).CrossRefGoogle Scholar
  3. 3.
    M. E. Itkis, F. Borondics, A. Yu, and R. C. Haddon, Science 312, 413 (2006).CrossRefADSGoogle Scholar
  4. 4.
    M. Bissett, I. Koper, and J. Shapter, J. Phys. Chem. 114, 6778 (2010).Google Scholar
  5. 5.
    S. Cataldo, P. Salice, E. Menna, and B. Pignataro, Energy Environ. Sci. 5, 5919 (2012).CrossRefGoogle Scholar
  6. 6.
    A. Kaskela, A. G. Nasibulin, M. Y. Timmermans, et al., Nano Lett. 10, 4349 (2010).CrossRefADSGoogle Scholar
  7. 7.
    A. G. Nasibulin, A. Kaskela, K. Mustonen, et al., ACS Nano 5, 3214 (2011).CrossRefGoogle Scholar
  8. 8.
    I. V. Anoshkin, A. G. Nasibulin, P. R. Mudimela, et al., Nano Res. 6, 77 (2013).CrossRefGoogle Scholar
  9. 9.
    A. G. Nasibulin, S. D. Shandakov, M. Y. Timmermans, et al., Inorg. Mater. Appl. Res. 2, 589 (2011).CrossRefGoogle Scholar
  10. 10.
    G. M. Mikheev, A. G. Nasibulin, R. G. Zonov, et al., Nano Lett. 12, 77 (2012).CrossRefADSGoogle Scholar
  11. 11.
    A. S. Anisimov, A. G. Nasibulin, H. Jiang, et al., Carbon 48, 380 (2010).CrossRefGoogle Scholar
  12. 12.
    G. M. Mikheev, K. G. Mikheev, T. N. Mogileva, et al., Quant. Electron. 44, 1 (2014).CrossRefADSGoogle Scholar
  13. 13.
    D. Olevik, A. V. Soldatov, M. Dossot, et al., Phys. Status Solidi 245, 2212 (2008).CrossRefGoogle Scholar
  14. 14.
    R. Saito, T. Takeya, T. Kimura, et al., Phys. Rep. 57, 4145 (2005).Google Scholar
  15. 15.
    K. G. Mikheev, G. M. Mikheev, V. L. Kuznetsov, et al., J. Nanomater. Mol. Nanotechnol. 2, 1 (2013).Google Scholar
  16. 16.
    G. M. Mikheev, V. L. Kuznetsov, K. G. Mikheev, T. N. Mogileva, M. A. Shuvaeva, and S. I. Moseenkov, Tech. Phys. Lett. 39 (4), 337 (2013).CrossRefADSGoogle Scholar
  17. 17.
    V. P. Veiko, V. I. Korol’kov, A. G. Poleshchuk, et al., Quant. Electron. 41, 631 (2011).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • G. M. Mikheev
    • 1
  • K. G. Mikheev
    • 1
  • I. V. Anoshkin
    • 2
  • A. G. Nasibulin
    • 2
    • 3
    • 4
  1. 1.Institute of Mechanics, Ural BranchRussian Academy of SciencesIzhevskRussia
  2. 2.Department of Applied PhysicsAalto UniversityEspooFinland
  3. 3.Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia
  4. 4.Skolkovo Institute of Science and TechnologySkolkovo Innovation CenterMoscowRussia

Personalised recommendations