Technical Physics Letters

, Volume 41, Issue 6, pp 610–613 | Cite as

Simulation of material sputtering with a focused ion beam

  • N. I. BorgardtEmail author
  • R. L. Volkov
  • A. V. Rumyantsev
  • Yu. A. Chaplygin


The evolution of the surface of a sample under the action of a focused ion beam (FIB) has been simulated using the level set method in the framework of a model that takes into account the redeposition of atoms primarily sputtered by the incident ions. In order to improve quantitative agreement between the results of simulation and experimental data, special experiments have been performed so as to refine the FIB shape and the model of secondary sputtering of the redeposited material. Using the example of rectangular cavities, it is shown that the proposed approach ensures high-precision simulation of a surface relief formed under the effect of an FIB.


Technical Physic Letter Surface Relief Rectangular Cavity Rede Position Trans Verse Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Bassim, K. Scott, and L. A. Giannuzzi, MRS Bull. 39, 317 (2014).CrossRefzbMATHGoogle Scholar
  2. 2.
    M. Rommel et al., Microelectron. Eng. 87, 1566 (2010).CrossRefzbMATHGoogle Scholar
  3. 3.
    M. Cantoni and L. Holzer, MRS Bull. 39, 354 (2014).CrossRefGoogle Scholar
  4. 4.
    R. L. Volkov, N. I. Borgardt, V. N. Kukin, A. V. Agafonov, and V. O. Kuznetsov, Tech. Phys. Lett. 39 (9), 822 (2013).ADSCrossRefGoogle Scholar
  5. 5.
    L. A. Giannuzzi and F. A. A. Stevie, Micron 30, 197 (1999).CrossRefGoogle Scholar
  6. 6.
    R. L. Volkov, N. I. Borgardt, V. N. Kukin, et al., J. Surf. Investig. X-ray Synchrotr. Neutron Tech. 5 (5), 900 (2011).CrossRefGoogle Scholar
  7. 7.
    S. Stoyanov, C. Bailey, Y. K. Tang, et al., J. Phys. Conf. Ser. 253, 012008 (2010).ADSCrossRefGoogle Scholar
  8. 8.
    H.-B. Kim, G. Hobler, A. Lugstein, et al., J. Micromech. Microeng. 17, 1178 (2007).ADSCrossRefGoogle Scholar
  9. 9.
    H.-B. Kim, G. Hobler, A. Steiger, et al., Nanotecnology 18, 245303 (2007).ADSCrossRefGoogle Scholar
  10. 10.
    S. Osher and R. P. Fedkiw, J. Comput. Phys. 169, 463 (2001).MathSciNetADSCrossRefzbMATHGoogle Scholar
  11. 11.
    O. Ertl, L. Filipovic, and S. Selberherr, Proceedings of the 15th Int. Conf. on Simulation of Semiconductor Processes and Devices (2010), pp. 49–52.Google Scholar
  12. 12.
    W. E. Lorensen and H. E. Cline, ACM Siggraph Computer Graphics 21, 163 (1987).CrossRefGoogle Scholar
  13. 13.
    S. Lindsey and G. Hobler, Nucl. Instrum. Meth. Phys. Res. B 282, 12 (2012).ADSCrossRefGoogle Scholar
  14. 14.
    A. Lugstein, B. Basnar, G. Hobler, et al., J. Appl. Phys. 92, 4037 (2002).ADSCrossRefGoogle Scholar
  15. 15.
    S. Tan, R. Livengood, Yu. Greenzweig, et al., J. Vac. Sci. Technol. B 30, 274 (2012).CrossRefGoogle Scholar
  16. 16.
    L. Frey, C. Lehrer, and H. Ryssel, Appl. Phys. A 76, 1017 (2003).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • N. I. Borgardt
    • 1
    Email author
  • R. L. Volkov
    • 1
  • A. V. Rumyantsev
    • 1
  • Yu. A. Chaplygin
    • 1
  1. 1.National Research University of Electronic TechnologyZelenograd, MoscowRussia

Personalised recommendations