Skip to main content
Log in

A microfluidic chip with hydrodynamic traps for in vitro microscopic investigations of single cells

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

An Erratum to this article was published on 01 September 2016

Abstract

The results on making a microfluidic chip for in vitro microscopic investigations of single cells are presented. Numerical simulation of the motion trajectories of microparticles makes it possible to determine the geometry of hydrodynamic traps, their number, and the trap arrangement in a reaction chamber. According to the developed design, microfluidic chips were fabricated from a SU-8 photoresist by photolithography. The microfluidic chips have been tested to prove their operating capacity for isolating and holding K562 human myeloid leukemia cells from a sample flow and their subsequent investigation by confocal laser scanning microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. D. Carlo and L. P. Lee, Anal. Chem., 7919 (2006).

    Google Scholar 

  2. A. Manz, N. Graber, and H. M. Widmer, Sens. Actuators, B 1, 244 (1990).

    Article  Google Scholar 

  3. A. M. Skelley, O. Kirak, H. Suh, R. Jaenisch, and J. Voldman, Nat. Methods 6, 147 (2009).

    Article  Google Scholar 

  4. N. Kaji, Y. Okamoto, M. Tokeshi, and Y. Baba, Chem. Soc. Rev. 39, 948 (2010).

    Article  Google Scholar 

  5. A. Grunberger, W. Wiechert, and D. Kohlheyer, Curr. Opin. Biotechnol. 29, 15 (2014).

    Article  Google Scholar 

  6. W. H. Ryu, Z. Huang, J. S. Park, et al., Lab Chip 8, 1460 (2008).

    Article  Google Scholar 

  7. K. Chung, C. A. Rivet, M. L. Kemp, and H. Lu, Anal. Chem. 83, 7044 (2011).

    Article  Google Scholar 

  8. A. A. Evstrapov, I. S. Mukhin, I. V. Kukhtevich, and A. S. Bukatin, Tech. Phys. Lett. 37(10), 956 (2011).

    Article  ADS  Google Scholar 

  9. A. A. Evstrapov, I. S. Mukhin, A. S. Bukatin, and I. V. Kuhtevich, Nucl. Instrum. Methods Phys. Res., Sect. B 282, 145 (2012).

    Article  ADS  Google Scholar 

  10. H. Karabulut, Eur. J. Phys. 27, 709 (2006).

    Article  MathSciNet  Google Scholar 

  11. Encyclopedia of Computational Mechanics, Vol. 1: Fundamentals, Ed. by E. Stein, R. de Borst, and T. J. R. Hughes (Wiley, 2004).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Bukatin.

Additional information

Original Russian Text © I.V. Kukhtevich, K.I. Belousov, A.S. Bukatin, M.V. Dubina, A.A. Evstrapov, 2015, published in Pis’ma v Zhurnal Tekhnicheskoi Fiziki, 2015, Vol. 41, No. 5, pp. 103–110.

An erratum to this article can be found at http://dx.doi.org/10.1134/S1063785016090273.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kukhtevich, I.V., Belousov, K.I., Bukatin, A.S. et al. A microfluidic chip with hydrodynamic traps for in vitro microscopic investigations of single cells. Tech. Phys. Lett. 41, 255–258 (2015). https://doi.org/10.1134/S1063785015030086

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785015030086

Keywords

Navigation