Technical Physics Letters

, Volume 41, Issue 1, pp 94–97 | Cite as

Features of flexible transparent conducting films based on polyaniline-carbon nanotube composite

  • A. V. Emelianov
  • K. F. Akhmadishina
  • A. V. Romashkin
  • V. K. Nevolin
  • I. I. Bobrinetskiy


We propose a new concept in the formation of transparent conducting films based on single-walled carbon nanotubes (SWNTs) and polyaniline (PANI) on a flexible polyethylene naphthalate substrate. It is established that the resistance of SWNT-PANI composite films decreases to less than half as compared to pure nanotubes, while the transparency is retained. Mechanisms responsible for a change in the conductivity of composite molecular systems are discussed based on differences in the transport of charge carriers in nanotubes and the polymer with allowance for their interaction.


PANI Composite Film Sheet Resistance Technical Physic Letter Single Walled Carbon Nanotubes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Cao, Y. Zheng, Z. Li, E. Wrzesniewski, W. T. Hammond, and J. Xue, Org. Electron. 13(11), 2221 (2012).CrossRefGoogle Scholar
  2. 2.
    Y. Galagan, Date J. D. Moet, D. C. Herme, P. W. M. Blom, and R. Andriessen, Org. Electron. 13(12), 3310 (2012).CrossRefGoogle Scholar
  3. 3.
    D. Zhang, K. Ryu, X. Liu, E. Polikarpov, J. Ly, M. E. Tompson, and C. Zhou, Nano Lett. 6(9), 1880 (2006).CrossRefADSGoogle Scholar
  4. 4.
    L. Hu, D. S. Hecht, and G. Gruner, Chem. Rev. 110(10), 5790 (2010).CrossRefGoogle Scholar
  5. 5.
    L. Hu, D. S. Hecht, and G. Gruner, Nano Lett. 4(12), 2513 (2004).CrossRefADSGoogle Scholar
  6. 6.
    H. Lin, L. Li, J. Renl, Z. Cail, L. Qiu, Z. Yang, and H. Peng, Sci. Rep. 3, 1353 (2013).ADSGoogle Scholar
  7. 7.
    J.-B. Sim, H.-H. Yang, M.-J. Lee, J.-B. Yoon, and S.-M. Choi, Appl. Phys. A 108, 305 (2012).CrossRefADSGoogle Scholar
  8. 8.
    I. I. Bobrinetskii, V. K. Nevolin, and A. V. Romashkin, Semiconductors 46(13), 1593 (2012).CrossRefADSGoogle Scholar
  9. 9.
    K. F. Akhmadishina, I. I. Bobrinetskii, R. A. Ibragimov, I. A. Komarov, A. M. Malovichko, V. K. Nevolin, and V. A. Petukhov, Inorg. Mater. 50(1), 23 (2014).CrossRefGoogle Scholar
  10. 10.
    M. Dressel and G. Gruner, Electrodynamics of Solids: Optical Properties of Electrons in Matter (Cambridge University Press, Cambridge, 2002), Ch. 6, p. 474.CrossRefGoogle Scholar
  11. 11.
    D. S. Hecht, A. M. Heintz, R. Lee, L. Hu, B. Moore, C. Cucksey, and S. Risser, Nanotechnology 22, 075201 (2011).CrossRefADSGoogle Scholar
  12. 12.
    S. J. Pomfret, P. N. Adams, N. P. Comfort, and A. P. Monkman, Polymer 41(6), 2265 (2000).CrossRefGoogle Scholar
  13. 13.
    J. Liu, J. Sun, and L. Gao, Nanoscale 3, 3616 (2011).CrossRefADSGoogle Scholar
  14. 14.
    C. Klinke, J. Chen, A. Afzali, and P. Avouris, Nano Lett. 5(3), 555 (2005).CrossRefADSGoogle Scholar
  15. 15.
    I. I. Bobrinetskiy, A. V. Emelianov, V. K. Nevolin, and A. V. Romashkin, Izv. Vyssh. Ucheb. Zaved.: Elektron., 102(4), 51 (2013); Semiconductors 48 (13), 1735 (2014); DOI: 10.1134/S106378261413003X.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • A. V. Emelianov
    • 1
  • K. F. Akhmadishina
    • 1
  • A. V. Romashkin
    • 1
  • V. K. Nevolin
    • 1
  • I. I. Bobrinetskiy
    • 1
  1. 1.National Research University of Electronic TechnologyZelenograd, MoscowRussia

Personalised recommendations