Advertisement

Technical Physics Letters

, Volume 41, Issue 1, pp 14–17 | Cite as

Engine-driven electrization of aircraft as a radio interference source

  • A. A. Varfolomeev
  • M. E. Gushchin
  • S. V. Korobkov
  • A. V. Kostrov
  • Yu. P. Palochkin
  • S. E. Priver
  • D. A. Odzerikho
  • A. V. Strikovskii
Article
  • 22 Downloads

Abstract

Field measurements of the quasi-static electrical fields emerging due to the in-flight electrization of low-speed low-altitude aircraft (helicopters) were performed for the first time. It was found that the electrization of helicopters with gas turbine power plants is of a engine-driven nature: the accumulation of static positive charge at the fuselage is induced by a unipolar negatively charged exhaust stream. A static positive fuselage potential that reaches +30 or even +35 kV for certain helicopter models was determined. If dielectric and composite materials are used in the construction of helicopters and specific parts of the aircraft are isolated electrically from the fuselage, differential electrization occurs. In view of the high absolute value of the fuselage potential, this electrization results in the generation of high-voltage discharges that serve as a source of intense radio interference within a frequency band of from several megahertz to several hundred megahertz.

Keywords

Technical Physic Letter Radio Interference High Voltage Discharge Helicopter Model Aircraft Fuselage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. A. Pinchuk, Tech. Phys. 42, 872 (1997).CrossRefGoogle Scholar
  2. 2.
    Yu. A. Nagel’, Tech. Phys. 44, 918 (1999).CrossRefGoogle Scholar
  3. 3.
    A. B. Vatazhin, A. M. Starik, and E. K. Kholshchevnikova, Fluid Dyn. 39, 384 (2004).CrossRefADSzbMATHGoogle Scholar
  4. 4.
    A. Sorokin and F. Arnold, Atmos. Environ. 38, 2611 (2004).CrossRefADSGoogle Scholar
  5. 5.
    H. Haverkamp, S. Wilhelm, S. Sorokin, and F. Arnold, Atmos. Environ. 38, 2879 (2004).CrossRefADSGoogle Scholar
  6. 6.
    A. B. Vatazhin, D. A. Golentsov, and V. A. Likhter, Fluid Dyn. 41, 810 (2006).CrossRefADSzbMATHGoogle Scholar
  7. 7.
    A. G. Temnikov, M. Z. Gilyazov, D. A. Matveev, A. Yu. Voronkova, L. L. Chernenskii, and A. V. Orlov, Tech. Phys. Lett. 37, 845 (2011).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • A. A. Varfolomeev
    • 2
  • M. E. Gushchin
    • 1
  • S. V. Korobkov
    • 1
  • A. V. Kostrov
    • 1
  • Yu. P. Palochkin
    • 3
  • S. E. Priver
    • 1
  • D. A. Odzerikho
    • 1
  • A. V. Strikovskii
    • 1
  1. 1.Institute of Applied PhysicsRussian Academy of SciencesNizhni NovgorodRussia
  2. 2.OAO RostvertolRostov-on-DonRussia
  3. 3.OOO NPP PrimaNizhni NovgorodRussia

Personalised recommendations