Skip to main content
Log in

Modeling the oscillations of a copper nanorod using the molecular dynamics method

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

The dynamics of oscillation of a copper nanorod with a length of 16.4 nm and a square cross section with a side of 3.0 nm were studied using the molecular dynamics modeling method. It was found that predominantly longitudinal oscillations arise in the process of relaxation in a stressed nanorod. It was shown that the variation of its potential energy with time does not represent the oscillation dynamics in its entirety. Beats of longitudinal and transverse oscillations of an initially deviated copper nanorod were found, and its Young’s modulus was determined. The obtained results are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Eom, H. S. Park, D. S. Yoon, and T. Kwon, Phys. Rep. 503, 115 (2011).

    Article  ADS  Google Scholar 

  2. O. Y. Loh and H. D. Espinosa, Nature Nanotechnol. 7, 283 (2012).

    Article  ADS  Google Scholar 

  3. S. Y. Kim and H. S. Park, Phys. Rev. Lett. 101, 215502 (2008).

    Article  ADS  Google Scholar 

  4. H. F. Zhan and Y. Gu, J. Appl. Phys. 111, 124303 (2012).

    Article  ADS  Google Scholar 

  5. H. F. Zhan, Y. Gu, and H. S. Park, Nanoscale 4, 6779–(2012).

    Article  ADS  Google Scholar 

  6. O. S. Trushin, K. Kokko, and R. T. Salo, Surf. Sci. 442, 420–(1999).

    Article  ADS  Google Scholar 

  7. S. M. Foils, M. I. Baskes, and M. S. Daw, Phys. Rev. B 33, 7983–(1986).

    Article  ADS  Google Scholar 

  8. J. Lao and D. Moldovan, Appl. Phys. Lett. 93, 093108 (2008).

    Article  ADS  Google Scholar 

  9. L. D. Landau and E. M. Lifshitz, Theory of Elasticity (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  10. H. Zeng, T. Li, M. Bartenwerfer, S. Fatikow, and Y. Wang, J. Phys. D: Appl. Phys. 46, 305501 (2013).

    Article  Google Scholar 

  11. Y. Yue, P. Liu, Z. Zhang, X. D. Han, and E. Ma, Nano Lett. 11, 3151 (2011).

    Article  Google Scholar 

  12. H. S. Park, W. Cai, H. D. Espinosa, and H. Huang, MRS Bull. 34, 178 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Amirov.

Additional information

Original Russian Text © A.N. Kupriyanov, O.S. Trushin, I.I. Amirov, 2014, published in Pis’ma v Zhurnal Tekhnicheskoi Fiziki, 2014, Vol. 40, No. 21, pp. 1–8.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kupriyanov, A.N., Trushin, O.S. & Amirov, I.I. Modeling the oscillations of a copper nanorod using the molecular dynamics method. Tech. Phys. Lett. 40, 937–940 (2014). https://doi.org/10.1134/S1063785014110066

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785014110066

Keywords

Navigation