Skip to main content
Log in

Shock waves in gas-jet target of a laser-produced-plasma short-wave-radiation source with two-pulse plasma excitation

Technical Physics Letters Aims and scope Submit manuscript


Previous investigations of the laser plasma at two-pulse mode of its generation revealed long-living perturbations of the gas-jet target by the first pulse, leading to significant modulations of the plasma radiation. In the present paper, results of a numerical hydrodynamic simulation of the gas-jet target are reported which provide explanation of the observed phenomena. An impact of the first pulse (prepulse) upon the target results in formation of a dense quasi-spherical layer in it, with a low-density area inside. This layer expands with the time and drifts downstream with the gas flow. Depending on the time interval between pulses, the second laser pulse can either intersect the dense layer or pass through the low-density gas, whereby the observed modulations of the plasma emission can be explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions


  1. A. Garbaruk et al., Proceedings of the Int. Workshop on EUV and Soft X-Ray Sources (November 3–7, 2013, Dublin, Ireland), Workshop Proc. S12;

  2. V. V. Zabrodskii, Yu. M. Zadiranov, S. G. Kalmykov, A. M. Mozharov, M. V. Petrenko, M. E. Sasin, and R. P. Seisyan, Tech. Phys. Lett. 40(8), 668 (2014).

    Article  ADS  Google Scholar 

  3. A. V. Garbaruk, D. A. Demidov, S. G. Kalmykov, and M. E. Sasin, Tech. Phys. 56(6), 766 (2011).

    Article  Google Scholar 

  4. Yu. M. Zadiranov, S. G. Kalmykov, M. E. Sasin, and P. Yu. Serdobintsev, Tech. Phys. 57(12), 1681 (2012).

    Article  Google Scholar 

  5. J. Murthy, W. Minkowycz, E. Sparrow, and S. Mathur, in Handbook of Numerical Heat Transfer, 2nd. ed., Ed. by W. Minkowycz, E. Sparrow, and J. Murthy (J. Wiley & Sons, Hoboken, NJ, 2006).

  6. S. R. Mathur and J. Y. Murthy, Numer. Heat Transf. B: Fundam. 32(2), 195 (1997).

    Article  ADS  Google Scholar 

  7. Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Fizmatlit, Moscow, 2008), pp. 82–87 [in Russian].

    Google Scholar 

  8. R. de Bruijn et al., J. Phys. D: Appl. Phys. 36, L88 (2003).

    Article  Google Scholar 

  9. R. de Bruijn et al., Phys. Plasmas 12, 042701 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to S. G. Kalmykov.

Additional information

Original Russian Text © A.V. Garbaruk, M.S. Gritskevich, S.G. Kalmykov, A.M. Mozharov, M.V. Petrenko, M.E. Sasin, 2014, published in Pis’ma v Zhurnal Tekhnicheskoi Fiziki, 2014, Vol. 40, No. 21, pp. 97–103.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garbaruk, A.V., Gritskevich, M.S., Kalmykov, S.G. et al. Shock waves in gas-jet target of a laser-produced-plasma short-wave-radiation source with two-pulse plasma excitation. Tech. Phys. Lett. 40, 980–983 (2014).

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: