Skip to main content
Log in

On the thermal vacuum radiation of nanoparticles and their ensembles

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

Thermal radiation of spherical particles and their ensembles is analyzed within the framework of fluctuation electrodynamics. Numerical calculations are carried out for spherical gold and graphite particles with allowance for real material properties and polarizabilities. It is shown that the maximum radiated power of single graphite particles in vacuum reaches 95 % of the radiation power of a black body with a temperature of 3000 K and a radius of 200 nm. Moreover, the presence of neighboring particles reduces the emissivity of a single particle by 3–40%. For gold particles, radiation power does not exceed 8% of the black-body radiation and has an oscillating dependence on the distance with a maximum amplitude of 0.8% of the constant component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. D. Landau and E. Lifshitz, Statistical Physics (Fizmatlit, Moscow, 2001), p. 613 [in Russian].

    Google Scholar 

  2. Emissivity of specific materials, http://www.colcparmer.com/techinfo

  3. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Nauka, Moscow, 1982), p. 620 [in Russian].

    Google Scholar 

  4. Yu. V. Martynenko and L. I. Ognev, Tech. Phys. 75(11) (2005).

    Google Scholar 

  5. Optical Constants of Solids, Ed. by E. D. Palik (Elsevier Science, 1998), Vol. 2.

    Google Scholar 

  6. S. Shen, A. Narayanaswamy, and Gang Chen, Nano Lett. 9, 2909 (2009).

    Article  ADS  Google Scholar 

  7. A. A. Kyasov and G. V. Dedkov, arXiv: 1210.6957; Dedkov G. V., Kyasov A. A. Physica B 433, 67 (2014).

    Google Scholar 

  8. G. V. Dedkov and A. A. Kyasov, in Handbook of Functional Nanomaterials, Ed. by M. Aliofkhazraei (Nova Science Publishers, New York, 2014), Vol. 1, P. 177.

  9. A. Manjavacas and F. J. Garcia de Abajo, Phys. Rev. B 86, 075466(1–22) (2012).

    Article  ADS  Google Scholar 

  10. F. J. Garcia de Abajo, Phys. Rev., B60, 6086 (1999).

    Article  ADS  Google Scholar 

  11. A. Messiah, Quantum Mechanics, (Elsevier, New York, 1981), Vol. 2.

    Google Scholar 

  12. H. C. Van de Hulst, Light Scattering by Small Particles (Dover, N. Y., 1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Dedkov.

Additional information

Original Russian Text © G.V. Dedkov, A.A. Kyasov, 2014, published in Pis’ma v Zhurnal Tekhnicheskoi Fiziki, 2014, Vol. 40, No. 20, pp. 15–21.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dedkov, G.V., Kyasov, A.A. On the thermal vacuum radiation of nanoparticles and their ensembles. Tech. Phys. Lett. 40, 890–893 (2014). https://doi.org/10.1134/S1063785014100198

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785014100198

Keywords

Navigation