Visualization of flow structure in a vortex furnace

Abstract

The spatial structure of a swirling flow in a model vortex furnace with distributed input of fuel-air-mixture jets has been studied. The results of experimental and numerical investigations of a three-dimensional (3D) field of time-averaged velocities in an isothermal laboratory model of a vortex furnace have been used to image the structure of flow. Vortex structures have been identified using λ2 and Q criteria, as well as the concept of “minimum total pressure.” The vortex core of the flow has a V-shaped 3D structure.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    I. S. Anufriev, Yu. A. Anikin, A. I. Fil’kov, E.L. Loboda, M. V. Agafontseva, D. P. Kasymov, A. S. Ti-zilov, A. V. Astanin, A. V. Pesterev, and E. V. Evtyushkin, Tech. Phys. Lett. 39(1), 30 (2013).

    ADS  Article  Google Scholar 

  2. 2.

    I. S. Anufriev, O. V. Sharypov, and E. Yu. Shadrin, Tech. Phys. Lett. 39(5), 466 (2013).

    ADS  Article  Google Scholar 

  3. 3.

    I. S. Anufriev, E. P. Kopyev, D. V. Krasinsky, V. V. Salomatov, E. Yu. Shadrin, and O. V. Sharypov, Energy Power Eng. 5, 306 (2013).

    Article  Google Scholar 

  4. 4.

    V. Meledin, Yu. Anikin, G. Bakakin, V. Glavniy, S. Dvoinishnikov, D. Kulikov, I. Naumov, V. Okulov, V. Pavlov, V. Rakhmanov, O. Sadbakov, S. Ilyin, N. Mostovskiy, and I. Pylev, in Turbomachines: Aeroelasticity, Aeroacoustics and Unsteady Aerodynamics, Ed. by V. A. Skibin, V. E. Saren, N. M. Savin, and S. M. Frolov (Torus Press, Moscow, 2006), pp. 446–457.

  5. 5.

    V. V. Salomatov, D. V. Krasinskii, Yu. A. Anikin, I. S. Anufriev, O. V. Sharypov, and Kh. Enhzhargal, J. Eng. Phys. Thermophys. 85(2), 282 (2012).

    Article  Google Scholar 

  6. 6.

    B. E. Launder, G. J. Reece, and W. Rodi, J. Fluid Mech. 68(3), 537 (1975).

    ADS  Article  MATH  Google Scholar 

  7. 7.

    K. Hanjalic and B. Launder, Modelling Turbulence in Engineering and the Environment: Second-Moment Routes to Closure (Cambridge University Press, Cambridge, 2011), pp. 80–83.

    Book  Google Scholar 

  8. 8.

    R. I. Issa, J. Comput. Phys. 62(1), 40 (1986).

    ADS  Article  MATH  MathSciNet  Google Scholar 

  9. 9.

    J. Jeong and F. Hussain, J. Fluid Mech. 285, 69 (1995).

    ADS  Article  MATH  MathSciNet  Google Scholar 

  10. 10.

    J. C. R. Hunt, A. A. Wray, and P. Moin, Proceedings of the 1988 Summer Program (Center For Turbulence Research, 1988), p. 193.

    Google Scholar 

  11. 11.

    Y. Dubief and F. Delcayre, Turbulence 1, 22 (2000).

    MathSciNet  Google Scholar 

  12. 12.

    C. E. Cala, E. C. Fernandes, M. V. Heitor, and S. I. Shtork, Exp. Fluids 40(2), 267 (2006).

    Article  Google Scholar 

  13. 13.

    P. Chakraborty, S. Balachandar, and R. J. Adrian, J. Fluid Mech. 535, 189 (2005).

    ADS  Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to I. S. Anufriev.

Additional information

Original Russian Text © I.S. Anufriev, D.V. Krasinsky, E.Yu. Shadrin, O.V. Sharypov, 2014, published in Pis’ma v Zhurnal Tekhnicheskoi Fiziki, 2014, Vol. 40, No. 19, pp. 104–110.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Anufriev, I.S., Krasinsky, D.V., Shadrin, E.Y. et al. Visualization of flow structure in a vortex furnace. Tech. Phys. Lett. 40, 879–882 (2014). https://doi.org/10.1134/S1063785014100022

Download citation

Keywords

  • Vortex
  • Technical Physic Letter
  • Laser Doppler Anemometry
  • Reynolds Stress Model
  • Velocity Gradient Tensor