Skip to main content
Log in

Alfvén wave amplification as a result of nonlinear interaction with a magnetoacoustic wave in an acoustically active conducting medium

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

It is shown that Alfvén waves propagating parallel and antiparallel to a magnetic field can be generated and amplified in an acoustically active heat-releasing ionized medium. The amplification is due to parametric energy pumping from the unstable magnetoacoustic waves to the Alfvén waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Alfvén, Nature 150(3805), 405 (1942).

    Article  ADS  Google Scholar 

  2. H. Alfvén, Mon. Not. R. Astron. Soc. 107, 111 (1947).

    Article  Google Scholar 

  3. D. E. Osterbrock, Astrophys. J. 134, 347 (1961).

    Article  ADS  Google Scholar 

  4. D. G. Wentzel, Solar Phys. 39, 129 (1974).

    Article  ADS  Google Scholar 

  5. S. W. McIntosh, B. de Pontieu, M. Carlsson, V. Hansteen, P. Boerner, and M. Goossens, Nature 475(7359), 477 (2011).

    Article  ADS  Google Scholar 

  6. J. Heyvaerts, Astron. Astrophys. 37, 65 (1974).

    ADS  Google Scholar 

  7. V. M. Nakariakov, C. A. Mendoza-Briceño, S. Ibáñez, and H. Miguel, Astrophys. J. 528(2), 767 (2000).

    Article  ADS  Google Scholar 

  8. D. I. Zavershinsky and N. E. Molevich, Tech. Phys. Lett. 39(8), 676 (2013).

    Article  ADS  Google Scholar 

  9. R. Chin, E. Verwichte, G. Rowlands, and V. M. Nakariakov, Phys. Plasmas 17(3), 032107 (2010).

    Article  ADS  Google Scholar 

  10. G. B. Field, Astrophys. J. 142, 531 (1965).

    Article  ADS  Google Scholar 

  11. N. E. Molevich and A. N. Oraevskii, Sov. Phys. JETP 67, 504 (1988).

    Google Scholar 

  12. N. E. Molevich, D. I. Zavershinsky, R. N. Galimov, and V. G. Makaryan, Astrophys. Space Sci. 334(1), 35 (2011).

    Article  ADS  MATH  Google Scholar 

  13. E. N. Parker, Astrophys. J. 117, 431 (1953).

    Article  ADS  Google Scholar 

  14. R. Z. Sagdeev and A. A. Galeev, Nonlinear Plasma Theory (Benjamin, New York, 1969; Moscow, Atomizdat, 1973), Ch. 1.

    MATH  Google Scholar 

  15. Y.-C. Chin and D. G. Wentzel, Astrophys. Space Sci. 16(3), 465 (1972).

    Article  ADS  Google Scholar 

  16. D. G. Wentzel, Solar Phys. 50, 346 (1976).

    Article  ADS  Google Scholar 

  17. D. I. Zavershinsky and N. E. Molevich, Komp. Opt. 37(4), 410 (2013).

    Google Scholar 

  18. F. V. Bunkin, K. I. Volyak, G. A. Lyakhov, and M. Yu. Romanovskii, Sov. Phys. JETP, 59(1), 80 (1984).

    Google Scholar 

  19. R. N. Galimov, D. I. Zavershinsky, V. G. Makaryan, and N. E. Molevich, Vestn. Samarsk. Gos. Aerokosm. Univ. 34(3), 118 (2012).

    Google Scholar 

  20. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Pergamon, New York, 1987).

    Google Scholar 

  21. M. I. Rabinovich and A. L. Fabrikant, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 19(5), 722 (1976).

    ADS  Google Scholar 

  22. N. E. Molevich, Tech. Phys. Lett. 27(7), 596 (2001).

    Article  ADS  Google Scholar 

  23. N. E. Molevich, High Temp. 39(6), 884 (2001).

    Article  Google Scholar 

  24. Y. R. Shen, The Principles of Nonlinear Optics (John Wiley & Sons, New York, 1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. E. Molevich.

Additional information

Original Russian Text © D.I. Zavershinsky, N.E. Molevich, 2014, published in Pis’ma v Zhurnal Tekhnicheskoi Fiziki, 2014, Vol. 40, No. 16, pp. 50–57.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zavershinsky, D.I., Molevich, N.E. Alfvén wave amplification as a result of nonlinear interaction with a magnetoacoustic wave in an acoustically active conducting medium. Tech. Phys. Lett. 40, 701–703 (2014). https://doi.org/10.1134/S1063785014080288

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785014080288

Keywords

Navigation