Technical Physics Letters

, Volume 40, Issue 4, pp 313–316 | Cite as

Experimental and theoretical investigation of silver-coated ZnO nanorod arrays as antennas for the visible and near-IR spectral range

  • E. M. Kaidashev
  • N. V. Lyanguzov
  • A. M. Lerer
  • E. A. Raspopova


A new design of optical antennas consisting of zinc oxide (ZnO) nanorods covered by a thin metal film is proposed. Arrays of highly oriented ZnO nanorods perpendicular to a substrate and covered by a thin silver film have been obtained using methods of carbothermal synthesis and magnetron sputtering. The problems of electromagnetic wave diffraction on a single metal/dielectric nanovibrator (situated at the interface of dielectrics) and on a two-dimensional periodic array of these nanovibrators have been solved. The results of calculations of the electrodynamic characteristics of optical antennas with various lengths have been compared to experimental data.


Technical Physic Letter Thin Metal Film Optical Antenna Thin Silver Film Electrodynamic Characteristic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Osgood et al., Proc. SPIE 7394, 1L1 (2009).Google Scholar
  2. 2.
    V. Minar, Nanotecnology 24, 042001 (2013).ADSCrossRefGoogle Scholar
  3. 3.
    N. M. Mikovsky et al., Nanotechnology, ID 512379 (2012), p. 1.Google Scholar
  4. 4.
    D. P. Lyvers, J. M. Moon, A. V. Kildishev, and V. M. Shalaev, ACS Nano 2(12), 2569 (2008).CrossRefGoogle Scholar
  5. 5.
    O. Imafidon, S. Georgakopoulos, Ph. K. Vabbina, and N. Pala, Proc. SPIE 7679, 76792L (2010).ADSCrossRefGoogle Scholar
  6. 6.
    L. Solomon, F. Gillot, A. V. Zayats, and F. Fornel, Phys. Rev. Lett. 86, 1110 (2001).ADSCrossRefGoogle Scholar
  7. 7.
    F. J. Garcia-Vidal et al., J. Lightwave Technol. 17, 2191 (1999).ADSCrossRefGoogle Scholar
  8. 8.
    V. V. Klimov, Nanoplasmonics (Fizmatlit, Moscow, 2009) [in Russian].Google Scholar
  9. 9.
    F. J. Garsia-Vidal, L. Martin-Moreno, and J. B. Pendry, J. Optics A 7, 97 (2005).ADSCrossRefGoogle Scholar
  10. 10.
    L. Martin-Moreno et al., Phys. Rev. Lett. 86, 1114 (2001).ADSCrossRefGoogle Scholar
  11. 11.
    M. L. Harries and H. D. Summers, IEEE Photonics Technol. Lett. 18, 2197 (2006).ADSCrossRefGoogle Scholar
  12. 12.
    A. I. Zhmakin, Phys. Reports 498, 189 (2011).ADSCrossRefGoogle Scholar
  13. 13.
    J. Dintinger et al., Adv. Materials 18, 1645 (2006).CrossRefGoogle Scholar
  14. 14.
    W. J. Padilla et al., Phys. Rev. Lett. 96, 107401 (2006).ADSCrossRefGoogle Scholar
  15. 15.
    E. V. Golovacheva, A. M. Lerer, and N. G. Parkhomenko, Vest. Mosk. Gos. Univ. Ser. 3, No. 1, 6 (2011).Google Scholar
  16. 16.
    E. V. Golovacheva, A. M. Lerer, P. V. Makhno, and G. P. Sinyavskii, Elektromagn. Volny Elektron. Sist. 16(5), 9 (2011).Google Scholar
  17. 17.
    A. M. Lerer, J. Commun. Technol. Electron. 57(11), 1151 (2012).CrossRefGoogle Scholar
  18. 18.
    A. M. Lerer and E. A. Tsvetyanskii, Tech. Phys. Lett. 38(11), 995 (2012).ADSCrossRefGoogle Scholar
  19. 19.

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • E. M. Kaidashev
    • 1
  • N. V. Lyanguzov
    • 1
  • A. M. Lerer
    • 1
  • E. A. Raspopova
    • 1
  1. 1.Research Institute of Mechanics and Applied MathematicsSouthern Federal UniversityRostov-on-DonRussia

Personalised recommendations