Skip to main content
Log in

Room-temperature proton-hopping transport in rutile-type oxides in the field of resonant laser radiation

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

A method of decreasing the operating temperature of devices based on proton-hopping transport is considered, which is new in the field of solid-oxide fuel cells. It is shown that the room-temperature rate of proton-hopping transport in rutile-type oxides can be sharply increased in a sample excited by resonant infrared radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. D. Kreuer, Perovskite Oxide for Solid Oxide Fuel Cells, Ed. by T. Ishihara (Springer, New York, 2009), pp. 261–272.

  2. A. L. Samgin, Elektrokhimiya 35(3), 312 (1999).

    Google Scholar 

  3. A. L. Samgin, Solid State Ionics 136–137, 291 (2000).

    Article  Google Scholar 

  4. K. E. Martin, J. P. Kopasz, and K. W. McMurphy, Fuel Cell Chemistry and Operation, ACS Symposium Series (American Chemical Society, Washington, DC, 2010), Ch. 1, pp. 1–13.

    Book  Google Scholar 

  5. E. J. Spahr, L. Wen, M. Stavola, L. A. Boatner, L. C. Feldman, N. H. Tolk, and G. Lüpke, Phys. Rev. Lett. 104(20), 205901 (2010).

    Article  ADS  Google Scholar 

  6. A. L. Samgin, Solid State Commun. 152(7), 585 (2012).

    Article  ADS  Google Scholar 

  7. A. L. Samgin, J. Phys. Chem. Solids 74(12), 1661 (2013).

    Article  ADS  Google Scholar 

  8. O. W. Johnson, S.-H. Paek, and J. W. DeFord, J. Appl. Phys. 46(3), 1026 (1975).

    Article  ADS  Google Scholar 

  9. N. H. Tolk and L. C. Feldman, J. Appl. Phys. 93(5), 2317 (2003).

    Article  ADS  Google Scholar 

  10. S. A. Kozlov and V. V. Samartsev, Principles of Femtosecond Optics (Fizmatlit, Moscow, 2009) [in Russian].

    Google Scholar 

  11. A. Grone and S. Kapphan, J. Phys.: Condens. Matter 7(15), 3051 (1995).

    ADS  Google Scholar 

  12. Yu. Ya. Gurevich and Yu. I. Kharkats, Superionic Conductors (Nauka, Moscow, 1992) [in Russian].

    Google Scholar 

  13. D. Banerjee, S. K. Banik, B. C. Bag, and D. S. Ray, Phys. Rev. E 66, 051105 (2002).

    Article  ADS  Google Scholar 

  14. V. V. Krasnogolovets, N. A. Protsenko, and P. M. Tomchuk, Int. J. Quant. Chem. 33, 349 (1988).

    Article  Google Scholar 

  15. C. P. Flynn and A. M. Stoneham, Phys. Rev. B 1, 3966 (1970).

    Article  ADS  Google Scholar 

  16. D. Antoniou and S. D. Schwartz, J. Chem. Phys. 110(15), 7359 (1999).

    Article  ADS  Google Scholar 

  17. A. N. Ezin and A. L. Samgin, Phys. Rev. E 82, 056703 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Ezin.

Additional information

Original Russian Text © A.L. Samgin, A.N. Ezin, 2014, published in Pis’ma v Zhurnal Tekhnicheskoi Fiziki, 2014, Vol. 40, No. 6, pp. 42–49.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samgin, A.L., Ezin, A.N. Room-temperature proton-hopping transport in rutile-type oxides in the field of resonant laser radiation. Tech. Phys. Lett. 40, 252–255 (2014). https://doi.org/10.1134/S1063785014030262

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785014030262

Keywords

Navigation