Technical Physics Letters

, Volume 39, Issue 11, pp 1012–1015 | Cite as

The influence of plasma horizontal position on the neutron rate and flux of neutral atoms in injection heating experiment on the TUMAN-3M tokamak

  • V. A. Kornev
  • F. V. Chernyshev
  • A. D. Melnik
  • L. G. Askinazi
  • F. Wagner
  • M. I. Vildjunas
  • N. A. Zhubr
  • S. V. Krikunov
  • S. V. Lebedev
  • D. V. Razumenko
  • A. S. Tukachinsky
Article

Abstract

Horizontal displacement of plasma along the major radius has been found to significantly influence the fluxes of 2.45 MeV DD neutrons and high-energy charge-exchange atoms from neutral beam injection (NBI) heated plasma of the TUMAN-3M tokamak. An inward shift by ΔR = 1 cm causes 1.2-fold increase in the neutron flux and 1.9-fold increase in the charge-exchange atom flux. The observed increase in the neutron flux is attributed to joint action of several factors-in particular, improved high-energy ion capture and confinement and, probably, decreased impurity inflow from the walls, which leads to an increase in the density of target ions. A considerable increase in the flux of charge-exchange neutrals in inward-shifted plasma is due to the increased number of captured high-energy ions and, to some extent, the increased density of the neutral target. As a result of the increase in the content of high-energy ions, the central ion temperature T i (0) increased from 250 to 350 eV. The dependence of the neutron rate on major radius R 0 should be taken into account when designing compact tokamak-based neutron sources.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y.-K. M. Peng, P. J. Fogarty, T. W. Burgess, et al., Plasma Phys. Control. Fusion 47, B263 (2005).CrossRefGoogle Scholar
  2. 2.
    M. Keilhacker, A. Gibson, C. Gormezano, et al., Nucl. Fusion 39, 209 (1999).ADSCrossRefGoogle Scholar
  3. 3.
    R. V. Budny, Nucl. Fusion 34, 1247 (1994).ADSCrossRefGoogle Scholar
  4. 4.
    M. Turnyanskiy, C. D. Challis, R. J. Akers, et al., Nucl. Fusion 53, 053016 (2013).ADSCrossRefGoogle Scholar
  5. 5.
    F. V. Chernyshev, B. B. Ayushin, V. V. Dyachenko, et al., Proceedings of the 34 EPS Conf. on Plasma Physics (Warsaw, 2007); ECA, Vol. 31F, P-5.107.Google Scholar
  6. 6.
    G. M. Vorob’ev, V. E. Golant, S. V. Gornostaev, et al., Sov. J. Plasma Phys. 9, 105 (1983).Google Scholar
  7. 7.
    L. G. Askinazi, F. V. Chernyshev, V. E. Golant, et al., Proceedings of the 34 EPS Conf. on Plasma Physics (Warsaw, 2007); ECA, Vol. 31F, P-1.146.Google Scholar
  8. 8.
    V. A. Kornev, L. G. Askinazi, M. I. Vildjunas, N. A. Zhubr, S. V. Krikunov, S. V. Lebedev, D. V. Ra- zumenko, V. V. Rozhdestvensky, and A. S. Tukachinsky, Tech. Phys. Lett. 39, 290 (2013).ADSCrossRefGoogle Scholar
  9. 9.
    A. B. Izvozchikov, M. P. Petrov, S. Ya. Petrov, et al., Sov. Phys. Tech. Phys. 37, 201 (1992).Google Scholar
  10. 10.
    S. V. Lebedev, M. V. Andrejko, L. G. Askinazi, et al., Plasma Phys. Control. Fusion 36, B289 (1994).ADSCrossRefGoogle Scholar
  11. 11.
    M. I. Vildjunas, V. A. Kornev, L. G. Askinazi, S. V. Lebedev, and A. S. Tukachinsky, Tech. Phys. Lett. 39, 1019 (2013) [this issue].CrossRefGoogle Scholar
  12. 12.
    G. Tardinia, C. Hohbauer, R. Fischer, et al., Nucl. Fusion 53, 063027 (2013).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • V. A. Kornev
    • 1
    • 2
  • F. V. Chernyshev
    • 1
  • A. D. Melnik
    • 1
  • L. G. Askinazi
    • 1
    • 2
  • F. Wagner
    • 2
  • M. I. Vildjunas
    • 1
    • 2
  • N. A. Zhubr
    • 1
    • 2
  • S. V. Krikunov
    • 1
    • 2
  • S. V. Lebedev
    • 1
    • 2
  • D. V. Razumenko
    • 1
    • 2
  • A. S. Tukachinsky
    • 1
    • 2
  1. 1.Ioffe Physical Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.RLPATSt. Petersburg State Polytechnical UniversitySt. PetersburgRussia

Personalised recommendations